Figyelmeztetés: Az oldal megtekintése csak a 18 éven felüli látogatók számára szól!
Honlapunk cookie-kat használ az Ön számára elérhető szolgáltatások és beállítások biztosításához, valamint honlapunk látogatottságának figyelemmel kíséréséhez. Igen, Elfogadom

Electronica.hu | Az elektrotechnika alapfogalmai : Elektrotechnika | Elektronika



...


...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Oxigén
 
8 nitrogénoxigénfluor
-

O

S
   
             
               
                                   
                                   
                                                               
                                                               
   
2s2 2p4
8
O
Általános
Név, vegyjel, rendszám oxigén, O, 8
Latin megnevezés oxygenium
Elemi sorozat nemfémek
Csoport, periódus, mező 16, 2, p
Megjelenés színtelen
Atomtömeg 15,99903–15,99977  g/mol[1][2]
Elektronszerkezet 2s2 2p4
Elektronok héjanként 2, 6
Fizikai tulajdonságok
Halmazállapot gáz
Sűrűség (0 °C, 101,325 kPa)
1,429 g/l
Hármaspont 54,36 K, 152 Pa
Olvadáspont 54,36 K
(-218,79 °C, -361,82 °F)
Forráspont 90,20 K
(-182,95 °C, -297,31 °F)
Kritikus pont 154,59 K, 5,043 MPa
Olvadáshő (O2) 0,444 kJ/mol
Párolgáshő (O2) 6,82 kJ/mol
Moláris hőkapacitás (25 °C) (O2)
29,378 J/(mol·K)
Gőznyomás
P/Pa 1 10 100 1 k 10 k 100 k
T/K       61 73 90
Atomi tulajdonságok
Kristályszerkezet köbös
Oxidációs szám 2, −1; 0; +1; +2
(semleges oxid)
Elektronegativitás 3,44 (Pauling-skála)
Ionizációs energia 1.: 1313,9 kJ/mol
2.: 3388,3 kJ/mol
3.: 5300,5 kJ/mol
Atomsugár 60 pm
Atomsugár (számított) 48 pm
Kovalens sugár 66±2 pm
Van der Waals-sugár 152 pm
Egyebek
Mágnesség paramágneses
Hőmérséklet-vezetési tényező (300 K) 26,58 mW/(m·K)
Hangsebesség (gáz, 27 °C) 330 m/s
CAS-szám 7782-44-7
Fontosabb izotópok
Fő cikk: Az oxigén izotópjai
izotóp természetes előfordulás felezési idő bomlás
mód energia (MeV) termék
16O 99,762% O stabil 8 neutronnal
17O 0,038% O stabil 9 neutronnal
18O 0,2% O stabil 10 neutronnal
Hivatkozások

Az oxigén a periódusos rendszer kémiai elemeinek egyike. Vegyjele O, rendszáma 8. Neve görög eredetű, a ὀξύς (oxys; ’sav’, szó szerint ’heveny’, utalva a savak savanyú ízére) és a -γενής (-genes; ’nemző’) szavak összetételéből származik; mert elnevezése idején még tévesen úgy gondolták, hogy az oxigén az összes savhoz szükséges összetevő. Régies magyar elnevezése éleny vagy savító.[3] Standard hőmérsékleten és nyomáson az oxigénatomok párosával egymáshoz kötődnek, az így létrejött kétatomos dioxigén (O2) színtelen, szagtalan, íztelen gáz. Ez a molekula a légkör fontos részét képezi, nélkülözhetetlen a szárazföldi élet fenntartásához.

Az oxigén az oxigéncsoport elemei közé tartozik; erősen reaktív nemfémes elem, amely más elemekkel könnyen képez vegyületeket (úgynevezett oxidokat), a három legkönnyebb nemesgáz, a hélium, a neon és az argon kivételével.[4] Az oxigén nagyon erős oxidálószer, az elemek közül csak a fluor elektronegativitása nagyobb.[5] Az oxigén – tömegre vetítve – a világegyetem harmadik leggyakoribb eleme a hidrogén és a hélium után;[6] egyben a Föld leggyakoribb eleme is, hiszen a földkéreg tömegének majdnem felét oxigén teszi ki (természetesen kötött állapotban).[7] Az oxigén kémiailag túl reaktív ahhoz, hogy hosszabb ideig elemi formában megmaradjon a légkörben. Az élő szervezetek fotoszintézise – melynek során a napfény energiájának felhasználásával vízből elemi oxigént állítanak elő – biztosítja folyamatos utánpótlását. A szabad, elemi oxigén mintegy 2,5 milliárd évvel ezelőtt kezdett felhalmozódni a légkörben (nagy oxigenizációs esemény) körülbelül egymilliárd évvel ezen organizmusok első megjelenése után.[8] A kétatomos oxigéngáz a levegő térfogatának 20,8%-át alkotja.[9]

Az élőlények tömegének legnagyobb részét az oxigén képezi, mert azok fő alkotóeleme a víz (például az emberi testtömeg körülbelül kétharmada).[10] Az oxigén megtalálható az élő szervezetekben előforduló számos fontos szerves kémiai vegyületcsoportban – mint például a fehérjék, nukleinsavak, szénhidrátok, és zsírok –, akárcsak a jelentős szervetlen vegyületekben, amelyek az állati fogakat, csontokat, héjakat, páncélokat alkotják. A cianobaktériumok, algák és növények által termelt elemi oxigént minden bonyolult élet a sejtlégzéskor használja fel. Az oxigén mérgező a szigorúan anaerob szervezetek számára, melyek a korai élet domináns formái voltak a Földön, amíg az O2 el nem kezdett felhalmozódni a légkörben. Az oxigén allotrop módosulata, az ózon (O3), jelentős mértékben elnyeli az UV-B sugárzást, így a nagy magasságban kialakult ózonréteg megvédi a bioszférát az ultraibolya sugárzás káros hatásaitól. Az ózon ugyanakkor a felszín közelében a szmog melléktermékeként kialakuló szennyezőanyag. Ennél nagyobb magasságban, alacsony Föld körüli pályán az atomos oxigén jelentős mennyiségben van jelen, ez okozza az űrjárművek erózióját.[11]

Az oxigént egymástól függetlenül fedezte fel Carl Wilhelm Scheele 1773-ban (vagy korábban) Uppsalában; illetve Joseph Priestley 1774-ben Wiltshire-ben; mivel azonban Priestley munkája előbb jelent meg, gyakran neki tulajdonítják az elsőséget. Az oxigén nevet Antoine Laurent de Lavoisier francia kémikus alkotta meg 1777-ben,[12] akinek az elemmel elvégzett kísérletei hozzájárultak az égés és korrózió akkoriban népszerű flogisztonelméletének megcáfolásában. Az oxigént az iparban cseppfolyósított levegő szakaszos lepárlásával; víz elektrolízisével; illetve zeolitok és nyomás adszorpció (pressure swing adsorption) alkalmazásával állítják elő. Az oxigént számos területen alkalmazzák, beleértve a műanyag-, textil- és acélgyártást; az acél és más fémek forrasztását, hegesztését és vágását; a rakéta-hajtóanyagot; az oxigénterápiát; illetve a repülőgépek, tengeralattjárók, az űrrepülés és a búvárkodás létfenntartó rendszereit.

Tulajdonságai

Szerkezete

Standard hőmérsékleten és nyomáson az oxigén színtelen, szagtalan gáz. Molekulaképlete O2, melyben a két oxigénatom triplett spinű elektronkonfigurációban kapcsolódik egymáshoz. Ennek a kötésnek a kötésrendje 2, de gyakran egyszerűen csak kettős kötésként[13] vagy egy kételektronos és két háromelektronos kötés kombinációjaként hivatkoznak rá.[14]

O2 oxigénmolekula

A triplett oxigén (nem tévesztendő össze az O3 vegyképletű ózonnal) az alapállapotú dioxigén molekula.[15] A molekula elektronszerkezete két párosítatlan elektront tartalmaz, amelyek két degenerált molekulapályán találhatóak.[m 1] Ezek a molekulapályák lazítónak minősülnek (a kötésrendet háromról kettőre csökkentik); így a kétatomos oxigén kötése gyengébb, mint a kétatomos nitrogén hármas kötése.[15]

Normál triplett állapotban a dioxigénmolekula paramágneses, azaz a párosítatlan elektronok spinjének mágneses momentuma és a szomszédos molekulák közötti negatív kicserélődési energia miatt az oxigén mágneses mező jelenlétében mágnest alkot.[16] A folyékony oxigén olyan mértékben vonzódik a mágneshez, hogy laboratóriumi bemutatók során egy erős mágnes pólusai között kialakult folyékony oxigénhíd akár még saját súlyát is képes lehet megtartani.[17][m 2]

A szingulett oxigén több, nagyobb energiájú (gerjesztett állapotú) molekuláris oxigén fajtát takar, amelyekben az összes elektronspin párosított. Sokkal reakcióképesebb a szerves molekulákkal szemben, mint önmagában a közönséges dioxigén. A természetben a szingulett oxigén általában vízből, fotoszintézis során keletkezik, a napfény energiájának felhasználásával.[19] A troposzférában az ózon fotolízise által keletkezik, rövid hullámhosszú fény hatására;[20] valamint az immunrendszer is előállítja mint aktív oxigénforrás.[21] A fotoszintetizáló organizmusokban (és esetleg még az állatokban) található karotinoidok fontos szerepet játszanak a szingulett oxigén energiájának elnyelésében, és gerjesztetlen alapállapotúvá alakításában, még mielőtt az kárt okozhatna a szövetekben.[22]

Allotrop módosulatai

Az elemi oxigén leggyakoribb allotrop módosulata a Földön az O2 vegyképletű dioxigén. Ebben a molekulában a kötés hossza 121 pm, a kötés energiája pedig 498 kJ·mol−1.[23] Ez az oxigén azon formája, melyet a komplex élet a sejtlégzés során hasznosítani tud, illetve amely a Föld légkörének jelentős részét teszi ki.

Az ózon ritka gáz a Földön, többnyire a sztratoszférában fordul elő

A trioxigén (O3) vagy ismertebb nevén ózon, az oxigén egy nagyon reaktív allotrópja, amely károsítja a tüdőszöveteket.[24] Az ózon a felső légkörben keletkezik, amikor az O2 atomos oxigénnel egyesül; ez utóbbi a kétatomos oxigénmolekula ultraibolya (UV) sugárzás általi felhasítása révén jön létre.[12] Mivel az ózon jól elnyeli az elektromágneses sugárzás UV tartományba eső részét, ezért a földi felső légkör ózonrétege mintegy védőpajzsként szolgál e sugárzással szemben.[12] Közel a Föld felszínéhez azonban az ózon szennyezőanyag, amely a gépjárművek kipufogógázainak melléktermékeként alakul ki.[24] A metastabil tetraoxigén (O4) molekulát 2001-ben fedezték fel,[25][26] és azt feltételezték, hogy a szilárd oxigén hat fázisának egyikében létezik. 2006-ban igazolták, hogy ez a 20 GPa nyomáson létrejövő fázis valójában romboéderes O8 klaszter.[27] Ez a klaszter potenciálisan sokkal erősebb oxidálószer, mint akár az O2, akár az O3, ezért felhasználható lehet rakéta-hajtóanyagban.[25][26] Fémes fázisát 1990-ben fedezték fel, amikor szilárd oxigént 96 GPa feletti nyomásnak tettek ki,[28] 1998-ban pedig kimutatták, hogy ez a fázis nagyon alacsony hőmérsékleten szupravezetővé válik.[29]

Fizikai tulajdonságai

Az oxigén apoláris tulajdonsága miatt a vízben rosszul, bár a nitrogénnél jobban oldódik. A levegővel egyensúlyi állapotban levő vízben két oldott N2-molekulára körülbelül egy O2-molekula jut, szemben a légköri mintegy 4:1-es aránnyal. Az oxigén vízoldhatósága hőmérsékletfüggő, 0 °C-on körülbelül kétszer annyi (14,6 mg/l), mint 20 °C-on (7,6 mg/l).[30][31] 25 °C-on, normál légköri nyomáson (101,3 kPa) az édesvíz literenként körülbelül 6,04 milliliter; míg a tengervíz literenként körülbelül 4,95 milliliter oxigént tartalmaz.[32] 5 °C-on az oldhatóság édesvíz esetében 9 milliliterre; tengervíz esetében 7,2 milliliterre emelkedik literenként.

Oxigénnel töltött gázkisülési cső

Az oxigén −182,95 °C-on (90,2 K) lecsapódik, és −218,79 °C-on (54,36 K) megfagy.[33] Folyékony és szilárd halmazállapotban is tiszta, halvány égkék színű anyag; színét a vörös tartományba eső fény abszorpciója okozza (ellentétben az ég kékjével, melynek oka a kék fény Rayleigh-szórása). Nagy tisztaságú folyékony oxigént általában cseppfolyósított levegő szakaszos lepárlásával (frakcionált desztilláció) állítanak elő.[34] Folyékony oxigént a levegőből történő kondenzálásával is elő lehet állítani, ehhez folyékony nitrogén hűtőközeget használnak. A cseppfolyós oxigén rendkívül reakcióképes anyag, gyúlékony anyagoktól el kell különíteni.[35]

Kémiai tulajdonságai

Az oxigén szobahőmérsékleten kevéssé reakcióképes, magasabb hőmérsékleten azonban csaknem minden elemmel egyesül. Szobahőmérsékleten is képes oxidálni elemeket, magas hőmérsékleten exoterm reakcióban egyesül velük (égés). Erős oxidálószer, az oxidáció a vele kapcsolatos megfigyelések folyományaként kapta a nevét. Apoláris oldószerekben jól oldódik. Az egyatomos oxigén (mint minden naszcensz atom) annyira reagens, hogy a természetben csak nagyon rövid ideig létezik (jelölése 'O').

  • reakciója fémekkel:

Source: Oxigén





A lap szövege Creative Commons Nevezd meg! – Így add tovább! 3.0 licenc alatt van; egyes esetekben más módon is felhasználható. Részletekért lásd a felhasználási feltételeket.