Figyelmeztetés: Az oldal megtekintése csak a 18 éven felüli látogatók számára szól!
Honlapunk cookie-kat használ az Ön számára elérhető szolgáltatások és beállítások biztosításához, valamint honlapunk látogatottságának figyelemmel kíséréséhez. Igen, Elfogadom

Electronica.hu | Az elektrotechnika alapfogalmai : Elektrotechnika | Elektronika



...


...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Naprendszer
 
A Naprendszer fontosabb égitestjei
(nem távolságarányosan)

A Naprendszer a Nap gravitációja által egyben tartott bolygórendszer, része a Tejútrendszer milliárd csillagrendszerének, amely galaxisunk Orion spirálkarjának nagyjából a felénél, a galaxis közepe és pereme között is hozzávetőleg félúton helyezkedik el. A Naprendszer határa a Naptól számított 8-10 billió km (kb. 1 fényév). A tudósok csak a 20. században jöttek rá, hogy a Naprendszernek nem a Kuiper-övnél van vége, hanem az Oort-felhőnél.[1]

A csillagászatban csillagrendszer alatt olyan rendszert értünk, amelyben sok csillag található, amik egymással gravitációs kölcsönhatásban vannak.

Bolygónknak, a Földnek otthont adó Naprendszerünk középpontjában a Nap található. Csillagunk gravitációs térrészén belüli objektumok és kölcsönhatások összessége jelenti a Naprendszert. Központi csillagunk hozzávetőleg 4,6 milliárd évvel ezelőtt alakult ki egy hatalmas gázfelhő gravitációs összehúzódása nyomán. Nem sokkal később, már 4,567 milliárd évvel ezelőtt a csillagkeletkezésnél visszamaradt, a Nap egyenlítői síkjában lapos korongba rendeződött anyagból, a protoplanetáris korongból kialakultak az első kisbolygók, majd bolygók. A belső Naprendszerben négy kőzetbolygó (a Merkúr, a Vénusz, a Föld és a Mars), a külső Naprendszerben négy óriásbolygó (a Jupiter, a Szaturnusz, az Uránusz és a Neptunusz) és az öt törpebolygó (Ceres, Pluto, Haumea, Makemake, Eris) alakult ki. A kőzetbolygók kérge szilikátos, a gázbolygók viszonylag kis szilárd magját hatalmas hidrogénhélium légkör veszi körül, a törpebolygók összetétele jeges kőzet.

A Naprendszerben a bolygókon kívül számos kisebb égitest is található. A legnagyobb számú égitest-populáció a két különálló övezetbe rendeződött aszteroidák családja. A belső aszteroidaöv a Mars és a Jupiter között, a külső, ún. Kuiper-öv pedig a Neptunusz pályáján túl helyezkedik el ellipszis alakban keringve a Nap mint gyújtópont körül. Ezekben az övekben található öt olyan objektum, amelyek egy 2006-ban bevezetett égitesttípus[2] ma ismert első tagjai, a törpebolygók. Hat bolygónak és három törpebolygónak természetes kísérői is vannak, ezeket holdaknak nevezzük. A holdakon kívül az óriásbolygók körül gyűrűk, gyűrűrendszerek keringenek.

A rendszerben vannak szabadon keringő testek is, ezek az üstökösök, a kentaurok és a mindenütt jelenlévő bolygóközi por. Ezek zömének keringése merőben eltér a többi testétől: vagy elnyújtott ellipszispályákon, vagy az ekliptikáétól eltérő síkban mozognak.

A Naprendszert teljesen betölti a napszél, a csillagunkból kiinduló folyamatos részecskeáramlás, amely kölcsönhatásba lép az égitestekkel, létrehozva az űridőjárást. A napszél egyben ki is jelöli a Naprendszer határait: hatása a heliopauzáig tart, ahol más csillagok szeleinek sugárnyomása kiegyenlíti a napszél sugárnyomását.[3] Ezt a határt tekintjük a Naprendszer határának, bár a rendszer gravitációs határa messzebbre tehető, hisz még a hozzávetőleg egy fényév távolságig terjedő Oort-felhő is ezen a határon belül van.

A Naprendszer keletkezése és története

A Nap keletkezése, fejlődése

Keletkező naprendszerek az Orion-ködben. A mi Napunk is így született

A Nap 4,6 milliárd évvel ezelőtt (az Univerzum ma ismert korának kétharmadánál) született,[4] harmadik generációs csillag. Sajnos megfigyeléseken alapuló, kísérletileg bizonyított keletkezési modellel még nem rendelkezik a csillagászat – bár a Barnard 335 csillag megfigyelésével a bizonyíték megszerzésének küszöbére érkezett[5]–, így csak elméletek állnak rendelkezésre. A ma legelfogadottabbnak tekintett keletkezési modell szerint Napunk születési helye egy molekulafelhő volt, egy gázzal és kozmikus porral teli, instabil térség, amelyben valamilyen okból – a legvalószínűbb forgatókönyv szerint egy közeli szupernóva robbanásának hatására – felborult az egyensúly,[5] és egy Naprendszer méretű anyagcsomó a saját tömegétől összeomlott; az anyag elkezdett összehúzódni egész addig, míg létre nem jött belőle a proto-Nap. A csillagkezdemény anyaga még tovább sűrűsödött, majd néhány millió év alatt beindult a belsejében a magfúzió és megszületett a Nap.[6] A beinduló magfúzió hatására a napszél is elkezdte áramlását és kifújta a maradék gázt a Nap környezetéből.

Egy planetáris köd, egy Naphoz hasonló csillag életének végstádiuma. Napunk 5 milliárd évvel későbbi állapota

Kezdetben csillagunk gyorsan forgott a saját tengelye körül, mivel a molekulafelhő teljes perdülete benne maradt fenn, később azonban lassult a forgás, nagyobbrészt a kialakuló bolygórendszernek átadott impulzusmomentum, kisebb részt a napszél folyamatos, szintén „impulzusmomentum-elszívó” hatása miatt.[7] A Nap sugárzása is fejlődést mutat, születésekor a mainak mintegy 70%-a volt a kibocsátott sugárzás mértéke, amely milliárd éves időskálán folyamatosan növekszik, amíg csillagunk ún. fősorozati csillag marad.[8] A Nap az életpályája során a legtöbb időt a fősorozatban tölti el, ez csillagunk életpályájának aktív részét jelenti, amíg a hidrogénkészletét a magfúziós folyamatok héliummá alakítják, modellszámítások szerint ennek a szakasznak a felénél tartunk napjainkban. Az elkövetkező 1 milliárd évben a Nap fényessége és külső hőmérséklete tovább növekszik.

A Nap nagyjából 10 milliárd éves koráig marad a fősorozatban,[9] ekkor kifogy a hidrogénkészlete és átmegy a vörös óriás fázisba. Ebben a fázisban beindul a héliumfúzió – a hélium szénné alakulása –, ami megtízszerezi a mag hőmérsékletét, ezzel a sugárnyomást is, így a gravitáció és a belső nyomás egyensúlya felborul az utóbbi javára, ez felfújja a csillagot (modellszámítások szerint a Föld mai pályáján, 1 csillagászati egységen túlra), miközben a felszíni hőmérséklete lecsökken. A felfúvódás során tömegének egy jelentős részét – számítások szerint 30%-át – is elveszti.

A héliumégető fázis az egész élettartam ezredrészét teheti ki, néhány tízmillió évig tart. Mikor a héliumkészlet szénné (és oxigénné) alakul, a Nap ledobja külső héját, amely egy tág burkot alkot majd a megmaradt mag körül – egy távoli megfigyelő számára planetáris ködöt alkotva. A visszamaradt mag fehér törpeként él tovább. Fehér törpe állapotban a Nap rendkívül kicsivé fog összehúzódni (nagyjából Föld méretűvé) és fényessé válik, belső energiatermelő folyamat azonban nem zajlik benne majd tovább. Csillagunk a benne akkumulálódott hőt fogja kisugározni és nagyon lassan kihűl. A Nap életpályájának a fősorozatban töltött idejéhez mérhetően hosszú, de jelenlegi ismereteink szerint még nehezen meghatározható fázisába lép ekkor, a csillag lehűlése egészen a fekete törpe állapotig tart majd. Ez a folyamat hosszabb lehet a világegyetem eddig eltelt életkoránál (a legidősebb fehér törpék még mindig a hűlési fázisnál tartanak, a fekete törpe állapot ma még csak elméleti modellekben létezik, megfigyelni még nem sikerült, így összességében a Nap életpályája a fekete törpévé válásig, csillagunk „haláláig” elérheti a 25–30 milliárd évet.

A bolygók, kisbolygók keletkezése, fejlődése

A bolygókeletkezés folyamata ma még nem teljesen tisztázott, csak modellszámítások léteznek rá. Tudományos igényű (nem az isteni teremtést alapul vevő) keletkezési elméletek a XVII-XVIII. században kezdtek megjelenni. Elsőként Descartes dolgozott ki keletkezésmodellt, az első széles körben elfogadott elmélet pedig Kant és Laplace egymástól függetlenül kidolgozott elmélete volt, amely szerint az alaktalan ősköd sűrűsödéséből született Nap egyenlítői síkjában a csillag keletkezésekor leváló (a Szaturnusz mai gyűrűihez hasonló) gyűrűkből alakultak ki a bolygók.[10] (Az elmélet azonban nem tette volna lehetővé óriásbolygók születését, ahogy kisebb planetezimálokét sem, és nem adott magyarázatot az impulzusmomentum egyenetlen eloszlására sem). Egy másik, Thomas Chrowder Chamberlin által kidolgozott elmélet szerint egy Nap mellett elhaladó másik csillag gravitációs hatása szakított le a Napról anyagot, amelyből a bolygórendszer kialakulhatott.[10] (Ennek az elméletnek is számos hibája volt, mint például az, hogy a leszakadt anyag inkább szétszóródott volna, mintsem objektumokká állt volna össze.) A Smidt-elmélet szerint a Nap egy csillagközi anyagfelhőn áthaladva rántott magával anyagot, amelyből a bolygók összeállhattak (igaz ennek a forgatókönyvnek gyakorlatilag nulla az esélye).[11]

A legvalószínűbb – a tudományos közösség által napjainkban leginkább elfogadott, ám kísérletileg a Nap keletkezésmodelljéhez hasonlóan szintén nem bizonyított – keletkezéstörténeti forgatókönyv szerint a bolygók kialakulása közvetlenül a Nap születése után, a csillag körül kialakult protoplanetáris korongból indult el. A keringő anyag belső súrlódása miatt már a protocsillag állapot végén megkezdődött egy akkréciós korong kialakulása a gyorsan forgó csillag egyenlítői síkjában, a csillagkeletkezés során visszamaradt gáz- és poranyagból.[12] Először a gázbolygók alakultak ki a Nap sugárzása által a rendszer külső részébe fújt gázból, nagyjából 2–3 millió év alatt.[13] A Naprendszer belső vidékein a gáz kifelé távozása miatt csak por maradt. A füstszemcsékhez hasonló méretű porszemcsék összetapadásával csomósodások jöttek létre az akkréciós korongban, a csomók hógolyó-effektusszerűen növekedtek és bolygócsírákká alakultak. A bolygócsírák folyamatos ütközések részesei voltak, amelyekben egymáshoz tapadtak, és egyesek egyre nagyobbá nőttek a kisebb sebességű ütközések során. A kezdeti időkben több száz 100–1000 kilométeres planetezimál jött létre, amelyek folyamatos ütközései alakították ki a ma ismert bolygókat, a bolygók tisztára söpörték a pályájuk mentén az űrt. Az ütközések energiája megolvasztotta a kialakuló bolygókat, amelyeken belül megindult a radioaktív fűtés is, ezzel még tovább emelve a testek hőmérsékletét, az így teljesen olvadt anyag gömb alakba rendeződhetett a gravitáció által. A kőzetbolygók keletkezése egy nagyságrenddel több idő alatt ment végbe, mint a gázbolygóké, néhány tízmillió évet véve igénybe.[14] A folyamat végén a magmaóceán teteje (a bolygók kérge) lehűlt, majd megszilárdult. Ezt követően már csak a nagyobb becsapódások okozta kataklizmák és a kisebbek miatti erózió zajlott. Az egymással keringési rezonanciában levő bolygók túlélték az ütközéseket, mások előbb-utóbb megsemmisültek, beolvadtak valamelyik másik égitestbe. A belső Naprendszerben két hullámban söpört végig az ütközések sorozata: a korai intenzív bombázás és a késői nagy bombázás során. A korai bombázás 3,95 milliárd évvel ezelőttig tartó folyamat volt,[15] gyakorlatilag az ismert bolygók pályájának tisztára söprési folyamata lehetett, amely egyre csökkenő sűrűségű becsapódásban nyilvánult meg. A késői bombázás pedig a 3,95–3,85 milliárd év közötti időszakban újra felerősödött – vélhetően a külső gázbolygók perturbációs hatásai miatt a rendszer belseje felé küldött aszteroidák okozta – becsapódási hullám volt,[16] ami egyben le is zárta a bolygókeletkezés folyamatát, ettől kezdve nagymértékben csökkentek a nagy kozmikus karambolok a belső Naprendszerben. A gázbolygók között nem ismert ilyen bombázási hullám, ám a rengeteg befogott holdjuk – mind megannyi aszteroida – arra utal, hogy ebben a térségben is számos ütközés történhetett.

A bolygók fejlődése ezután különböző utakon haladt tovább. A legbelső bolygót például felperzselte a Nap, a napszél erodálta a felszínét és ha volt egyáltalán, akkor elragadta a légkörét. Egyes feltételezések szerint a felszín nagy részét magával ragadta egy planetezimállal történt ütközés, ennek bizonyítéka a többi bolygóhoz aránytalanul nagy vasmag, amelyhez korábban vélhetően nagyobb térfogatú bolygótest tartozott.[17] A második bolygón a nagy vulkáni aktivitás miatt a légkörbe került gázok fékezhetetlen üvegházhatást indítottak be és ma rendkívül magas nyomás és hőmérséklet jellemzi a vulkánosság szempontjából inaktív bolygót. A harmadik bolygón hatalmas kiterjedésű vízóceánok alakultak ki és egy óriási becsapódás nyomán a testéből kiszakadt és önálló égitestté állt össze egy óriási hold. Emellett kialakult rajta az élet, egyedüliként a Naprendszerben. A negyedik bolygó elvesztette légkörét és vízkészletének jelentős részét. Az ötödik bolygó össze sem állt bolygóvá, mivel a hozzá legközelebb eső óriásbolygó gravitációs zavaró hatása nem engedte a planetezimálok bolygóvá összeállását, így egy kisebb-nagyobb testekből álló, több ezer tagot számláló övezet maradt a helyén. Az "igazi" ötödik bolygó a Naprendszer legnagyobb tagjává vált, hatalmas hidrogén- és héliumlégkört gyűjtött magába és gravitációs hatásával mintegy pajzsot von a rendszer belső részei elé, eltérítve, vagy befogva a befelé tartó üstökösmagokat, aszteroidákat. Gravitációja a legnagyobb számú holdat keringeti, köztük a Naprendszer legnagyobb holdjaival. A hatodik bolygó ugyancsak gázokból hatalmasra hízott óriás, amely egy holdját az árapály erőkkel darabokra tördelve látványos gyűrűrendszerrel övezi magát. A hetedik bolygó a hidrogén és hélium mellé metánt is gyűjtött óriási légkörébe, és ennek is gyűrűk keringenek az egyenlítői síkjában, ráadásul egy kozmikus ütközés „az oldalára fordította”.[18] A legkülső gázbolygó szintén metántartalmú légkörében hatalmas szelek fújnak.

A bolygókon kívül más égitestek is kialakultak az akkréciós korongból, a kisbolygók. Ezeknek az égitesteknek a fejlődéstörténete kissé eltér a bolygókétól, egész pontosan a fejlődésük leállt egy bizonyos ponton. A Naprendszerben két különböző aszteroidamező kering, az egyik a Mars és a Jupiter között, a másik a Neptunuszon túl, a Kuiper-övben. Korábban azt feltételezték, hogy a Mars és a Jupiter közötti fő aszteroida-övben keringő kozmikus törmelék egy korábbi bolygó felrobbanásából származik, azonban a modern számítások szerint ehhez kevés az ott található anyag tömege (Holdunk tömegének 4%-a, vagy más összehasonlításban Földünk tömegének alig fél ezreléke[19]). A legújabb kutatások inkább azt állapították meg, hogy a Jupiter perturbációs hatása nem hagyta a bolygócsírák összeállását bolygótestté.[20]

Valószínűleg ugyanez játszódott le a Kuiper-öv aszteroidái esetében, csak ott a Neptunusz okozhatta az összeállást gátló gravitációs zavarást.

A bolygók és kisbolygók jövője nagyban függ a Nap működésének változásaitól. A legáltalánosabb nézet szerint csillagunk fősorozati léte végén akkorára fújódik, hogy a Földet is bekebelezi. Egyes modellszámítások szerint a Föld pályája addigra kijjebb kerül, ám a jelenlegi körülmények mindenképpen gyökeresen megváltoznak a felszínén. A Merkúr és a Vénusz mindenképpen megsemmisül. A külső bolygók elvileg kívül maradnak a Nap felfúvódásának határán, ám a vörös óriás fázis végén, amikor a Nap ledobja külső gázburkát, a leszakadó gázburok tágulása magával sodorhatja a tömegük legnagyobb részét kitevő légkörüket. A kisbolygók pályája is megváltozik csillagunk tömegvesztése miatt, és vélhetően valamelyik bolygóval vagy a Nappal ütköznek. Végül, amikor a Nap fehér törpeként létezik tovább az univerzumban, a megmaradt bolygóroncsok tovább keringenek a csillagtetem körül.[21]

A Naprendszer megismerésének története

A Naprendszer megismerésének története nagyjából három fő korszakra osztható fel, amelyeket két technikai vívmány választ el egymástól: a távcső feltalálása és az űrrepülések kezdete.

A távcső előtti idők

A heliocentrikus világkép alapműve, a Kopernikusz által írt De Revolutionibus egyik oldala

A csillagászati megfigyeléseknek időben nincs kezdőpontjuk, már az őskor sámánjai is megfigyelték az eget. Ezek a megfigyelések azonban kizárólag szabad szemes megfigyelések voltak. A csillagászat forradalma az ókori kultúrák idejére esik – bár ez nyilvánvalóan csak sok évezredes tapasztalat egyszerre történő megjelenése az írásos rögzítés jóvoltából –, már ekkor tudták, hogy bizonyos égitestek elmozdulnak a csillagokhoz képest. Ezeket az objektumokat bolygóknak nevezték el, amelyek az európai kultúrkörben római istenségek után kaptak nevet: a Jupiter az istenek királyáról, a Mars a hadistenről, a Merkúr az istenek hírvivőjéről, a Vénusz a szépség és szerelem istennőjéről, a Szaturnusz az idő istenéről. A korai megfigyelők ismerték a hosszú csóvát húzó üstökösöket és a hullócsillagnak nevezett meteorokat is. A csillagászati megfigyelések fő mozgatórugója a gazdaság volt. A mezőgazdaság részéről pontos csillagászati időjelzésre (az évszakok beköszöntésének, áradások eljöttének ismeretére), a kereskedő hajósok részéről pedig pontos csillagászati helymeghatározásra teremtődött meg az igény, ezért szisztematikussá vált az égbolt megfigyelése. Ezen megfigyelések alapján rajzolódott ki a Naprendszer kezdeti képe is, amelyben azonban az észlelési tapasztalatok alapján a geocentrikus világkép uralkodott.

Egyiptomi csillagászok mérték ki először pontosan az év hosszát, azt az időt, amely alatt az égbolt egy teljes fordulatot tesz meg a Földhöz képest.[22] A Naprendszerre vonatkozó konkrét felfedezésekben az ókori görögök jeleskedtek. Thalész nyitotta meg a nagy csillagászati felfedezések sorát, amikor megállapította, hogy a Holdat a Nap világítja meg.[23] Ezzel kétféle égitesttípusra osztályozta az általuk megfigyelhető objektumokat: saját fénnyel rendelkező és nem rendelkező égitestekre. Mindössze egy emberöltővel később Püthagorasz sejtette meg – igaz inkább hibás spekuláció alapján, mintsem tudományos igénnyel –, hogy a Föld, a Nap és a Hold gömbölyű. Arisztotelész a kortársai által zavaros fejűnek tartott Püthagorasz után 150 évvel ismét felvetette, hogy a három fő égitest gömbölyű, és megtoldotta azzal, hogy az őket elválasztó távolságok különbözőek.[24] A három görög gondolkodó tehát a térbe helyezte a Naprendszert. A következő csillagászati eredmény a Föld, mint bolygó méretének megmérése volt. Eratosztenész egyiptomi utazásai során a kutak mélyére délben lesütő Nap és egy bot árnyékának összefüggéséből sikeresen számította ki a Föld kerületét.[25] A szamoszi Arisztarkhosz a Nap távolságának mérésével kísérletezett, és azt kapta, hogy a Nap legalább 19-szer nagyobb a Földnél, ezért valószínűleg nem a Nap kering a Föld körül, hanem fordítva.[26] Ez volt a heliocentrikus világkép első megsejtése, ám a római térhódítás miatt a görög tudományok fejlődése megállt, nézeteik elterjedése megakadt.

A Naprendszer megismerésének második nagy hulláma már a középkorra tehető, amikor a 15–16. századi nagy földrajzi felfedezések korában Európában is újra virágzásnak indult a tudomány, azon belül a csillagászat. Kopernikusz lengyel polihisztor az öt ismert bolygó mozgását tanulmányozta – amelyek Föld körüli keringését sosem sikerült pontos elméleti modellekkel alátámasztani –, és húsz évnyi megfigyeléssel, méréssel és töprengéssel rájött, hogy a bolygók keringésének központja nem a Föld, hanem a Nap. Nézeteit a De Revolutionibus Orbium Coelestium című művében tette közzé, amelyet ma a heliocentrikus világképet leíró alapműnek tekintünk. Kopernikuszt egy dán csillagász, Tycho Brahe követte, aki harmincéves szisztematikus megfigyeléssel a bolygók mozgásának legpontosabb adattárát állította össze. Brahe adatait felhasználva aztán Johannes Kepler számította ki a bolygók pályáit – közben megállapítva, hogy azok nem kör, hanem ellipszis pályán mozognak –, így hármuk munkája révén teljesült ki a Naprendszer ma ismert képe, amelyben a Nap a központi égitest és a bolygók ellipszispályán keringenek körülötte.

A távcső korszaka

Galileo Galilei, az első modern csillagász

A csillagászat tudományának, a Naprendszer és a világegyetem megismerésének a legnagyobb lökést egy holland találmány, a távcső égbolt felé fordítása adta. Alig egy évvel a találmány bemutatása után, 1609-ben Galileo Galilei, itáliai tudós az éjszakai égbolt szisztematikus megfigyelésébe kezdett, és megfigyeléseivel erős közvetett bizonyítékokat szolgáltatott a heliocentrikus világkép mellett, lényegében igazolva annak helyességét. Megfigyelései során felfedezte a Jupiter óriásholdjait. A napokon át tartó megfigyelések során az időről időre eltűnő, majd újra előbukkanó holdakról azt a következtetést vonta le a tudós, hogy azok az anyabolygójuk körül keringenek. Ezzel először szolgáltatott bizonyítékot arra, hogy a Naprendszerben nem minden kering a Föld körül, azaz a geocentrikus világmodell hibás. Később sikerrel figyelte meg a Vénusz bolygó fényfázisait is, amelyek szintén azt bizonyították, hogy a bolygó nem a Föld, hanem az őt megvilágító Nap körül keringenek.

A Nap-Föld távolságot elfogadható pontossággal 1672-ben Giovanni Cassini számította ki elsőként. A felfedezés azért volt fontos, mert a tudósok legtöbbje akkoriban abban a hitben élt, hogy a Nap mindössze néhány millió km távolságra lehet a Földtől. Cassini bebizonyította, hogy ez a távolság jóval nagyobb, és az is fontos felismerés volt, hogy a csillagok még ennél is sokkal távolabb vannak. Mivel ismert volt, hogy a Napba nézni megvakulással járhat, ezért Cassini Kepler törvényeire támaszkodva azt a módszert választotta, hogy megméri a Föld és valamely bolygó távolságát, és ebből kiszámítja a Nap-Föld távolságot. A Mars viszonylag közel van a Földhöz, és Cassini jól ismerte a felszínét. Elhatározta, hogy meghatározza a Mars-Föld távolságot. Természetesen távcsővel ezt sem lehet megtenni közvetlenül, azt azonban igen, hogy a Föld két különböző pontjáról egy adott pillanatban megállapítják a Mars előre kiszemelt pontjának látszólagos helyzetét és ezeket összevetve és geometriai tételeket alkalmazva kiszámítható a távolság. A számítás nagyobb pontossága érdekében a Földön lévő két pontnak egymástól a lehetőleg távol, és jól ismertnek kell lennie, ezért Cassini elküldte Jean Richer francia csillagászt Cayenne-be, Francia Guyanába, ő maga pedig Párizsban maradt. 1672 egyik augusztusi éjszakáján, azonos időpontban megmérték a Mars előre kiszemelt (és Richer utazása előtt kettejük között egyeztetett) pontjának égi pozíciószögét az állócsillagokhoz viszonyítva. Amikor Richer visszatért Párizsba az eredményeivel, Cassini ki tudta számítani a Mars távolságát a Földtől. Ezzel az adattal Kepler keringési törvényét alkalmazva kiszámolta a Nap-Föld távolságot, amit 149,6 millió km-ben állapított meg. A modern tudományos mérések szerint ez az érték mindössze 0,7%-kal kisebb a mai méréseknél, ami nagyon jó eredménynek számít. Cassini kiszámította több más bolygó távolságát is, és a Szaturnusz távolságára a Naptól 2,57 milliárd km-es értéket kapott, ami elképzelhetetlenül nagynak számított akkoriban (a ma ismert átlagos érték 1,42 milliárd km).[27]

A napközpontú világkép bizonyítása után a távcső a felfedezések legfőbb eszköze lett. A bolygók családja három taggal bővült általa. Az Uránuszt 1781-ben William Herschel találta meg, a Neptunuszt Johann Gottfried Galle pillantotta meg először 1846-ban Urbain Le Verrier számításai alapján, míg a – később a Nemzetközi Csillagászati Unió döntése alapján bolygóból törpebolygóvá visszaminősített – Plútó felfedezése (1930) Clyde Tombaugh nevéhez fűződik. A kisbolygók, sőt egyáltalán az egész kisbolygóöv is a távcsőnek köszönhetik felfedezésüket, mivel ezek az objektumok méretüknél fogva olyan kevés fényt vernek vissza, hogy messze a szabad szemes észlelhetőség határán kívül esnek, megpillantásuk csak fénygyűjtő eszköz segítségével lehetséges. Giuseppe Piazzi 1801. január 1-jén fedezte fel a Cerest, amelyet akkor kisbolygónak osztályoztak, s amelyet rövid időn belül követett a Pallasz, a Juno és a Vesta felfedezése. A bolygók holdjainak felfedezése is a távcsöves kutatások eredménye. A Mars két holdjának, a Jupiter és a Szaturnusz holdcsaládjainak tucatnyi tagjának megtalálása is a 19–20. század távcsöves kutatásainak eredménye. A távcsövek fejlődésével végül a Naprendszeren belül a finomabb részletek megfigyelése vált kutatási területté (a kisebb objektumok felfedezése mellett, amely végül már az amatőr csillagászok felségterülete lett). Így például a Mars pólussapkájának változásai, a Vénusz felhőzetének mintázatának feltérképezése, a Jupiter sávjainak, viharainak megfigyelése mind a modern távcsöves megfigyelések feladatai voltak.

Az űrkorszak

Az űrkorszak a műholdak, űrszondák korszaka, az a legújabb kori fejlődési lépcsőfok, amelyben az ember képes kutatóeszközöket a világűrbe – gyakorlatilag a Naprendszerbe – juttatni és ezáltal még pontosabb adatokhoz, ismeretekhez jutni a bolygórendszerünkről. Az újdonsült eszközök nem csak távmegfigyeléseket tettek, tesznek lehetővé, hanem helyszíni megfigyeléseket, kutatásokat is, sőt a Hold esetében az ember jelenlétét és közreműködését a kutatásokban. A kutatások ilyen módon már nem kizárólag optikai megfigyelésekben kellett kimerüljenek, hanem széles körű, a fizika több területét érintő mérésekben, megfigyelésekben testesültek meg, úgymint hőmérséklet, nyomás, elektromágneses – a látható fény tartományán kívül az összes spektrumban –, tömegspektrométeres, sőt a leszálló szondák révén anyagvizsgálati mérésekben.[28]

A kutatások az első ember alkotta tárgy, a Szputnyik–1 1957. október 4-i felbocsátásával kezdődtek, néhány primitív mérés (hőmérséklet, nyomás és rádiós elektronsűrűség-mérések) formájában.[29] Az ezt követő néhány év az űrbe jutás és az űrbeli navigáció képességének megszerzésével telt el, majd különböző műszerek feljuttatásával egyre részletesebb képet alkottak az űrkutatók a Naprendszerről (néhány csillagászati megfigyelőeszközön kívül – melyek elsősorban a Naprendszeren túli teret vizsgálják – a feljuttatott eszközök szinte kizárólag a bolygóközi teret vizsgálják). A Naprendszer objektumainak megismerése, ezen belül elsősorban a bolygók felderítése először az objektumok mellett elrepülő szondákkal, a rájuk telepített kamerákkal, spektrométerekkel és egyéb műszerekkel történt.

A bolygók – és más kulcsfontosságú helyek első – elérése
Dátum Esemény
1957. október 4. A Szputnyik–1, a világ első sikeres műholdjának startja
1959. január 4. A Hold elérése a Luna–1 révén
1962. december 14. Az első bolygó, a Vénusz elérése a Mariner–2-vel
1964. november 28. A Mariner–4 elrepült a Mars mellett
1973. december 3. A Pioneer–10 először ért el egy gázbolygót, a Jupitert
1974. március 29. A Mariner–10 elérte a Merkúrt
1979. szeptember 1. A Pioneer–11 elsőként érte el a Szaturnuszt
1986. január 24. A Voyager–2 elsőként érte el az Uránuszt
1989. augusztus 25. A Voyager–2 elsőként érte el a Neptunuszt
1991. október 29. A Galileo elsőként repül el egy kisbolygó mellett
2008. május 30. A Voyager–1 elérte a heliopauza előtti lökéshullámot
2012. augusztus 1. A Voyager–1 csillagközi űrbe lépett[30]
2015. július 14. A New Horizons elsőként érte el a Plutot[31]

Az elrepülő szondák után hamar igény támadt az egyes égitestek körül pályára álló, majd a felszínre le is szálló kutatószondák iránt. A keringő és a leszállóegységek általában egymást kiegészítő kutatási programokra adtak lehetőséget: a keringő egységek globális adatokat szolgáltattak, míg a leszállóegységek egy kisebb helyszín lokális, de nagyon részletes megismerését tették lehetővé. A szilárd felszínnel rendelkező bolygók közül a Merkúr kivételével mindegyiken szállt már le kutatóegység, a két legnagyobb gázbolygónál pedig keringő egység tett felfedezőutat – tekintve, hogy itt nincs szilárd felszín, ahová le lehetne szállni, így ezekhez nem küldtünk leszállóegységeket –, sőt a Szaturnusz Titán holdjára is szállt már le űrszonda.[32] A Hold esetében még emberekkel végzett leszállásokra is sor került. Ezen eszközök révén a Naprendszerről meglévő tudásunk megtöbbszöröződött, az űrkorszakban szerzett ismeretek nagysága messze felülmúlja az előző több ezer év alatt felgyülemlett tudást.

Elsőkénti leszállások más bolygókon, vagy pályára állás körülöttük
Dátum Esemény
1966. február 3. A Luna–9 elsőként hajtott végre sima leszállást a Holdon
1970. december 15. Az első leszállás egy másik bolygó, a Vénusz felszínén a Venyera–7-tel
1971. december 2. A Marsz–3 teljesítette az első sima marsi leszállást
1986. január 24. A Voyager–2 elsőként érte el az Uránuszt
1995. december 7. A Galileo pályára állt a Jupiter körül
2001. február 12. A NEAR Shoemaker leszállt az Eros kisbolygón
2004. július 1. A Cassini–Huygens szonda Szaturnusz körüli pályára állt
2005. január 14. A Cassini szonda Huygens leszállóegysége leszállt a Titán holdon
2010. június 13. A Hajabusza lett az első űrszonda, ami visszatért egy kisbolygóról mintákkal[31]
2011. március 17. A Messenger lett az első űrszonda, ami pályára állt a Merkúr körül[31]
2014. augusztus 6. A Rosetta lett az első űrszonda, ami pályára állt egy üstökös körül[31]
2014. november 12. Az első leszállás egy üstökös felszínén, a Philae leszállóegységgel[31]
2015. március 6. Az első leszállás egy törpebolygón (Ceres), a Dawn űrszondával[31]
2019. január 3. A Csang-o–4 leszállt a Hold túlsó oldalán[31]

A Naprendszer felépítése

Égitestek

A Naprendszer a Napból és azon kisebb égitestekből áll, melyeket a Nap gravitációs hatása tart a pályájukon. A Nap körül keringő testek nagy része közel egy síkban kering, ezt a síkot az ekliptika síkjának nevezik. Az itt található anyag többsége a nyolc legnagyobb testben, a bolygókban koncentrálódik, bár ez a tömegmennyiség így is nagyon kicsi a Nap tömegéhez képest, mely a Naprendszer össztömegének 99,86%-át adja.[33]

A Naphoz legközelebb keringő négy bolygó (a Merkúr, a Vénusz, a Föld és a Mars) alkotja a kőzetbolygók, más néven Föld-típusú bolygók csoportját; ezek javarészt kőzetekből és fémekből épülnek fel, felszínük szilárd. A négy külső bolygó (a Jupiter, a Szaturnusz, az Uránusz és a Neptunusz) gázóriások, melyeknek összetétele jelentősen eltér a kőzetbolygókétól; túlnyomóan gáz halmazállapotú, könnyebb elemek (hidrogén és hélium) alkotják őket. Átlagos sűrűségük kisebb, méretük viszont jóval nagyobb, mint a belső bolygóké. A gázbolygók mindegyike rendelkezik gyűrűrendszerrel, bár messze a legnagyobb és legismertebb a Szaturnuszé.

A Naprendszer bolygóinak jelenleg 144 ismert és elnevezett holdja van és további 23 vár megerősítésre.[34] Ezen kis égitestek a bolygók körül keringenek, keletkezésük és összetételük igen eltérő. A holdak többségét űreszközök segítségével fedezték fel.

A Nap körül az összes bolygó, és a bolygók körül a legtöbb hold azonos irányban kering, és a forgásirányokra is döntően ez az irány jellemző: ez az ekliptika északi pólusa felől nézve pozitív irány (az óramutató járásával ellentétes). Vannak persze olyanok is, amelyek kivételt képeznek, és ellentétes, ún. retrográd irányban keringenek vagy forognak. Például az Uránusz[35] és a Vénusz[36] tengely körüli forgása, illetve a Neptunusz Triton nevű holdjának keringése retrográd, negatív irányú.

A Naprendszerben két olyan övezet található, melyekben a kisebb naprendszerbeli testek koncentrálódása figyelhető meg. Az egyik a Mars és a Jupiter pályája között található kisbolygóöv, melyben feltételezések szerint több millió aszteroida található, melyek mérete a 940 kilométeres Cerestől az 1 kilométernél is kisebb testekig terjed.[37] A másik ilyen övezet a Neptunusz pályáján túl elterülő Kuiper-öv (ejtsd: kiper), mely a Naptól mintegy 30–50 csillagászati egységre (4,5–7,5 milliárd kilométerre) terül el. Ennek a jeges objektumokból álló, korong alakú régiónak a meglétét csak 1992-ben erősítették meg.[38] A Kuiper-övet gyakran a Naprendszer végső határának tekintik.

A fenti két övezetben jelenleg öt olyan égitest ismert, melyeknek tömege elég ahhoz, hogy saját gravitációjuk hatására közel gömb alakúak legyenek, így ezek az objektumok alkotják a 2006-ban bevezetett törpebolygók csoportját (a Ceres, a Pluto, az Eris, a Makemake és a Haumea). A bolygóktól abban térnek el, hogy pályájuk térségét nem söprik tisztára. Két évvel a törpebolygók kategóriájának bevezetése után a Nemzetközi Csillagászati Unió definiálta a plutoidák fogalmát; ezek gyakorlatilag a Plutóhoz hasonló törpebolygók, melyek pályájának fél nagytengelye nagyobb, mint a Neptunuszé.[39]

Azon apró égitesteket, melyek nem elég nagyok, hogy kisbolygók legyenek, de nagyobbak a bolygóközi pornál, meteoroidoknak nevezzük. A becslések szerint naponta 1000 és 10 000 tonna közötti mennyiségben érik el a Föld légkörét, a meteornak hívott fénycsóva jelenségét okozva.[40] A meteoroidok feltehetően a Naprendszeren belülről származnak.

A Naprendszer különleges égitestjei az üstökösök. Ezek olyan, a Nap körül keringő objektumok, melyeknek a Nap közelébe kerülve láthatóvá válik a kómája és a csóvája – mindkét jelenség legfőbb oka az üstökösmagot érő napsugárzás. Az üstökösök keringési ideje nagyon változatos, néhány évtől akár évmilliókig terjedhet. A 200 évnél rövidebb keringési idejű üstökösöket rövidperiódusú, az annál hosszabbakat hosszúperiódusú üstökösöknek nevezzük. A rövidperiódusú üstökösök többsége feltehetőleg a Kuiper-övből származik, míg a hosszúperiódusúak közül sok a távoli Oort-felhőből érkezhet.

Távolság szerinti szerkezet

A Naprendszert két elég jól elkülönülő részre osztjuk, amely osztályozás a két részben található égitestek fizikai tulajdonságai alapján történik. A belső Naprendszer a kőzetbolygók birodalma, kevés égitesttel, köztük a Földdel, a külső Naprendszer pedig az óriásbolygók, a rengeteg hold hazája, az üstökösök szülőhelye.

Belső Naprendszer

A belső Naprendszer egy viszonylag kis térrész, a Naptól, mint központi égitesttől a fő aszteroidaöv külső széléig terjedő tartomány. Az itt keringő objektumok szilárd kérge megőrizte a Naprendszer történetének kezdeti idejének folyamatait, így tanulmányozásukkal sikerült modellezni a keletkezéstörténet állomásait, a rendszer evolúcióját. A belső Naprendszer meghatározó égitestjei a négy kőzetbolygó és azok három holdja, ezeken kívül csak a változatos pályákon keringő aszteroidák találhatók meg itt.

Külső Naprendszer

A külső Naprendszer a gázbolygók és az üstökösök birodalma. Itt is négy bolygó a meghatározó égitesttípus, amelyek azonban összehasonlíthatatlanul nagyobbak, mint a kőzetbolygók és összehasonlíthatatlanul nagyobb hatással vannak a naprendszerbeli kisebb égitestekre, mint a belső Naprendszer bolygói. A gázóriások körül tucatjával keringenek a holdak – általában befogott aszteroidák – megmutatva, hogy a Naprendszer még kijjebb eső részei felől milyen sok égitest érkezik, illetve hogyan óvják meg a nagybolygók a belső Naprendszert a kozmikus bombázástól. A nagybolygókon kívül már csak a Naprendszer keletkezésekor megmaradt anyag található anyagtól ritkább, vagy sűrűbb övezetekben.

A Naprendszer legkülső határát jelentő Oort-felhő létezését elsőként Jan Oort holland csillagász vetette fel 1950-ben. Ez a gömb alakú, üstökösmagok milliárdjait tartalmazó felhő a Naptól 50 000–100 000 csillagászati egységre található. Itt érnek véget a Nap gravitációs és más fizikai hatásai, így a felhő objektumait könnyen befolyásolhatják más csillagok, illetve magának a Tejútrendszernek a hatásai is. A felhő nem túl sűrű, az üstökösök akár 10 millió km-re is lehetnek egymástól, és a külső zavaró hatások miatt könnyen elindulhatnak a Naprendszer belseje, vagy a külső világűr felé. Az Oort-felhő létezését még nem sikerült közvetlen megfigyeléssel bizonyítani.[41]

A Naprendszer égitestjei

A Nap

A Nap a Naprendszer központi csillaga, a Földhöz legközelebb eső csillag, körülötte kering a Naprendszer minden objektuma, az egész rendszer meghatározó eleme. Bolygónktól átlagosan 149 600 000 kilométer távolságra van (ezt a távolságát nevezik csillagászati egységnek), tömege a Földének 332 900-szorosa, ami a Naprendszer teljes tömegének 99,86%-át teszi ki. Anyagának 73,5%-a hidrogén, 24,85%-a hélium, a többi közel 2% anyag pedig más nehezebb anyagból tevődik össze. Csillagunk belsejében magfúzió zajlik, amelyben a hidrogén héliummá alakul, és rengeteg energia szabadul fel.

A Nap G2V színképtípusú csillag,[42] amely 10 milliárd évig tartó fősorozatbeli fejlődésének a felénél jár. Életciklusa végéhez közeledve – a hidrogénkészlet teljes felhasználása – előbb vörös óriássá, majd a hélium oxigénné és szénné alakulása után fehér törpévé alakul majd.

A Nap hat régióból áll: a magból, a sugárzási zónából, a konvekciós zónából, a fotoszférának nevezett látható felszínből, a kromoszférából és a legkülső rétegből, a koronából. A mag hőmérséklete körülbelül 15 millió fok, ami elegendő a termonukleáris reakció fenntartásához. A Földre érkező hő és fény gyakorlatilag a magban termelődik. A sugárzási zónán át 170 000 évig tart, mire az energia a magból a konvekciós zónába jut, ekkorra a hőmérséklete 2 millió fokra csökken. A Nap felszíne nagyjából 5500 fokos. Csillagunk alakja nem gömb, hanem ellipszoid, a saját tengelye körüli forgás miatt az egyenlítői átmérője 10 kilométerrel nagyobb, mint a poláris átmérője. Saját tengelye körüli forgási periódusa 25 nap 9 óra 7 perc 13 másodperc.

Központi égitestünket a korai civilizációk istenként tisztelték – Egyiptomban például főistenként – és bár már a görögök idején megszülettek az első természettudományos magyarázatok a mibenlétére és istenség-képe is megváltozott, a legtöbb világmodellben a Nap keringett a Föld körül. Csak később, a középkori Európában bizonyították gondolkodók (elsősorban Kopernikusz), hogy nem a Nap kering a Föld körül, hanem fordítva és az égitest a rendszer középpontja.

Az emberiség életére legnagyobb befolyással levő égitest űrszondás megfigyelése talán a legszélesebb körű minden más égitesthez képest. A megfigyelések a NASA Pioneer5, –6, –7, –8 és –9 szondasorozat napszelet és a Nap mágneses mezejét mérő repüléseivel indult, a Helios szondák napkorona mérésein, a Solar Maximum Mission sugárzásmegfigyelésein, a japán Yohkoh röntgenmérésein át jutott el a legsikeresebb szondákig, a csillagot évekig folyamatosan több hullámhosszon megfigyelő SOHO napobszervatóriumig és a Nap poláris régióit megfigyelő Ulyssesig. A Napot még egy űrhajósokkal végzett program is vizsgálta, a Skylab-programban az űrállomás egyik fő részegysége egy napobszervatórium volt, amellyel számos megfigyelést végzett a program három legénysége 1973–74-ben.

Bolygók

A Nemzetközi Csillagászati Unió (IAU) Prágában tartott konferenciáján részt vevő mintegy 2500 küldött 2006. augusztus 24-én, többségi szavazással új bolygódefiníciót fogadott el.[43] Eszerint a bolygó a Nap körül kering, tömege elégséges ahhoz, hogy saját gravitációja közel gömb alakúra formálja a testet, illetve a pályáját tisztára söpörte. A döntés fő oka az volt, hogy a Neptunuszon túl már felfedeztek a Plútónál nagyobb tömegű égitestet, és valószínűleg még számos, fel nem fedezett törpebolygó kering a térségben, melyeket a közeljövőben fedeznek fel, így a Naprendszer bolygóinak száma túl nagy lenne.[44] Így a fenti döntés értelmében már csak nyolc égitestet tekintünk bolygónak.

A bolygóknak alsó tömeg- vagy mérethatáruk nincs – ezt azonban fizikailag kijelöli a saját gravitáció által kialakuló gömbforma követelménye –, felső tömeghatáruk viszont van: a 13 Jupiter-tömeg határt átlépő égitestek már elegendő tömegűek a lítium- vagy deutériumfúzió beindulásához, így ezeket már barna törpének osztályozzuk. Ilyen égitest a Naprendszerben nincs.

A Naprendszer bolygóinak európai kultúrkörben elterjedt elnevezése az ókori római mitológia alakjai után kapott nevek átvételével történt, amely ma már az IAU működése nyomán világszerte egységes elnevezés-rendszer. Korábban az Európától távol létrejött civilizációkban más és más nevekkel illették ezen égitesteket, bár ezen nevezéktanok többsége mitológiai alapon épült fel és szintén istenek neveit adta a bolygóknak.

A bolygóknak két altípusát különböztetjük meg a naprendszerbeli tapasztalataink alapján: kőzetbolygók és gázbolygók. A közelmúltban más csillagok körül is fedeztek fel bolygókat kutatók, ezek az ún. exobolygók, amelyeket szintén erre a két altípusra szokás szétválasztani, hacsak nem sikerül olyat felfedezni, amely egyik típus jellemzőinek sem felel meg.

A bolygók néhány adatának összehasonlítása
Információ forrás: https://hu.wikipedia.org/wiki/Naprendszer
A lap szövege Creative Commons Nevezd meg! – Így add tovább! 3.0 licenc alatt van; egyes esetekben más módon is felhasználható. Részletekért lásd a felhasználási feltételeket.

Source: Naprendszer





A lap szövege Creative Commons Nevezd meg! – Így add tovább! 3.0 licenc alatt van; egyes esetekben más módon is felhasználható. Részletekért lásd a felhasználási feltételeket.


  Merkúr Vénusz Föld Mars Jupiter Szaturnusz Uránusz Neptunusz
Tömeg (kg[45]), (Föld = 1) 3,301·1023

(0,055)

4,867·1024

(0,815)

5,972·1024

(1)

6,417·1023

(0,107)

1,898·1027

(317,899)

5,683·1026

(95,162)

8,681·1025

(14,532)

1,024·1026

(17,147)

Egyenlítői sugár (km[45]), (Föld=1) 2440,5
(0,383)
6051,8
(0,949)
6378,137
(1)
3396,2
(0,533)
71 492
(11,209)
60 268
(9,449)
25 559
(4,007)
24 764

(3,883)

Poláris sugár (km), (Föld=1) 2439,7[46]

(0,384)

6051,8[47]

(0,952)

6356,752[48]

(1)

3376,2[49]

(0,531)

66854[50]

(10,517)

54364[51]

(8,552)

24973[52]

(3,929)

24341[53]

(3,829)

Térfogat (Föld = 1) 0,0562[46] 0,857[47] (1) 0,151[49] 1321[50] 764[51] 63,1[52] 57,7[53]
Közepes sűrűség (g/cm³)[45] 5,43 5,24 5,51 3,93 1,33 0,69 1,27 1,64
Felszíni nehézségi gyorsulás (az egyenlítőnél) (m/s²[45]), (Föld=1) 3,70

(0,378)

8,87

(0,905)

9,80

(1)

3,71

(0,378)

24,79

(2,53)

10,44

(1,066)

8,87

(0,905)

11,15

(1,137)

Szökési sebesség (km/s[45]) 4,25 10,36 11,19 5,03 60,20 36,09 21,38 23,56
Tengely körüli forgás időtartama (d = földi nap, h = földi óra) (R = retrográd) 58,65 d 243,16 d.R 23,93 h 24,62 h 9,92 h 10,67 h 17,23 h.R 16,12 h
Felszíni középhőmérséklet (°C)[54] 167
(−173/+427[55])
+464 +15 −65
(−153/+20[55])
−110 −140 −195 −200
Gyűrűk száma 0 0 0 0 1 8 11 4
Holdak száma[55] 0 0 1 2 79 83