Figyelmeztetés: Az oldal megtekintése csak a 18 éven felüli látogatók számára szól!
Honlapunk cookie-kat használ az Ön számára elérhető szolgáltatások és beállítások biztosításához, valamint honlapunk látogatottságának figyelemmel kíséréséhez. Igen, Elfogadom

Electronica.hu | Az elektrotechnika alapfogalmai : Elektrotechnika | Elektronika



...


...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Nap

☉ Nap
2019-es valós színű felvétel a Napról
2019-es valós színű felvétel a Napról
Megfigyelési adatok
Távolság149,6·106 km
8,3 fényperc, 1 CsE, 1,581·10−5
Látszólagos fényesség -26,86m
Abszolút fényesség 4,8m
Színkép típusa G2V
Pályaadatok
Távolság a Tejútrendszer magjától ~2,5·1017 km
(26 000–28 000 fényév)
(8,5 kiloparszek)
Galaktikus periódus 2,25–2,50·108 év
Radiális sebesség 217 km/s a Tejútrendszer középpontjához képest,
20 km/s a szomszédos csillagokhoz képest
Fizikai adatok
Átmérő[1] 1,392·106 * km
Kerület4,373·106 ** km
Lapultság 9·10–6
Felszín6,09·1012 *** km²
Térfogat1,41·1018 **** km³
Tömeg1,9891·1030 ***** kg
Sűrűség1,408 g/cm³
Felszíni gravitáció 273,95 m/s²
(27,9 g)
Szökési sebesség 617,54 km/s
Hőmérséklet
Felszín5780 K
Korona5·106 K
Mag~13,6·106 K
Luminozitás3,827·1026 W
100 lm/W
3,9·1028 lm
1 L
Forgási adatok
Tengelyferdeség 7,25°
(az ekliptika síkjához képest)
67,23°
(a Tejútrendszer síkjához képest)
Forgási periódus 25,3800 nap
(25 nap 9 h 7 min 13 s) (egyenlítő mentén)
Forgási sebességEgyenlítőn: 7174 km/h
Rendszer
Csillagösszetevők

A fotoszféra összetétele[2]
(az anyagok plazma állagúak)

Bolygók ld. Naprendszer

*109 földnyi
**109 földnyi
***11 900 földnyi
****1 300 000 földnyi

*****332 950 földnyi

A Nap a Naprendszer központi csillaga. Körülötte kering a Föld, valamint a Naprendszerhez tartozó többi bolygó, továbbá törpebolygók, kisbolygók, üstökösök és más égitestek. A Földtől körülbelül 150 millió  kilométer távolságra van, ami fénysebességgel haladva 8,3 perc. A Nap tartalmazza a Naprendszer anyagának 99,8%-át, átmérője 109 földátmérő. 73,5%-ban hidrogénből áll, amely a központjában zajló magfúzió során héliummá alakul. Az ennek során felszabaduló, majd a világűrbe szétsugárzott energia nélkülözhetetlen a legtöbb földi élőlény számára: fénye a növények fotoszintézisét, hője pedig az elviselhető hőmérsékletet biztosítja. Éltető ereje miatt a Nap kiemelkedő kulturális és vallási jelentőséggel bír.[3] Fénye és hője mellett különböző tudományágak szempontjából is rendkívül fontos, mert bizonyos jelenségeket nem tudunk mesterségesen előállítani, csak a Napon megfigyelni. Ezek a tudományágak: plazmafizika, magnetohidrodinamika, atomfizika, részecskefizika.

A Nap egy G2V színképtípusú csillag, a mintegy 10 milliárd évig tartó fősorozatbeli fejlődésének a felénél jár. A fűtőanyagát jelentő hidrogén elhasználása után, 5 milliárd év múlva vörös óriássá duzzad, majd a külső rétegeiből planetáris köd képződik, magja pedig magába roskadva fehér törpévé alakul.[4] Ez egyúttal a földi élet pusztulását fogja magával hozni.[5]

Mivel anyagát képlékeny plazma alkotja, a különböző szélességi körön levő területei eltérő sebességgel forognak; az egyenlítői területek 25, míg a sarkvidékek csak 35 naponként fordulnak körbe. Az eltérés miatt erős mágneses zavarok lépnek fel, amelyek napkitörések és – különösen a mágneses pólusok 11 évente bekövetkező felcserélődésének idején megszaporodó – napfoltok kialakulásához vezetnek.[6]

A Nap asztrológiai és csillagászati jele egy kör, középen ponttal: A Nap csillagászati jele. Ez a jel volt ókori egyiptomi napisten hieroglif jele is. A naptisztelet már ősidőktől fogva kimutatható; globálisan istenségként tisztelték és a napkultusz a Föld minden táján elterjedt, egyes régiókban pedig meghatározó kultuszként működött. Napjaink újpogányságában fontos ünnepei szerveződnek a nyári és téli napforduló, illetve tavaszi és őszi nap-éj egyenlőség köré.[7] A decemberi téli napfordulón, a Yule (Jul) ünnepén köszöntik az újpogányok és a mai boszorkányok az újjászülető Napot.[8]

Fizikai és egyéb tulajdonságok

A Nap élete első ciklusában lévő csillag, a G2V színképosztályba tartozik,[9] valamivel nagyobb és forróbb, mint a legtöbb csillag.[10] A G2 jelölés lényegében egy felszíni hőmérsékleti tartományra[9] – az 5800–5900 kelvin körüli felszíni hőmérsékletre – utal, amely egyben meghatározza fehér színét is, továbbá az adott felszí­ni hő­mér­sék­le­té­re ér­zé­keny abszorpciós vo­na­lak in­ten­zi­tá­sa­ira,[9] lényegében arra, hogy a színképében ionizált és semleges fémek színképvonalait lehet felismerni, nagyon gyenge hidrogénvonalak jelenléte mellett. A V jelölés pedig luminozitásának jelölése, amely a Napot a fősorozatbeli csillagok közé sorolja:[9] a belsejében zajló folyamatok egyensúlyban vannak, nincs összeomló vagy felfúvódó állapotban.

Színe érdekes paradoxont rejt, míg a köztudat szerint a Nap sárga színű, a róla érkező fény valójában fehér, akár a fehér szín etalonjának is tekinthető. A jelenségre több magyarázat is született:

  • a légkör fénytörése, amely az ég kék színéért is felelős, változtatja meg a Nap színét;
  • optikai csalódás, amelyet a kék ég kontrasztja miatt látunk;
  • csak olyankor tudunk többé-kevésbé belenézni, amikor alacsonyabban áll az égen és ilyenkor a légkörben lebegő por miatt elszíneződik a fénye a sárgától a narancson át egészen a naplemente vöröséig.
  • ősi „hagyomány” a Napot sárgának tekinteni, mivel őseink a tűzzel azonosították csillagunkat, amelynek lángja sárgás.

Precíz mérések azonban egyik hipotézist sem támasztják alá.[11]

A Nap közel tökéletes gömb alakú égitest, amely saját tengelye körül forog, így a hidrosztatikai egyensúlyban levő gömb fizikai megtestesülése. Lapultsága igen kicsi: az egyenlítő mentén csak 10 km-rel szélesebb, mint a sarkokon. A viszonylag lassú tengelyforgás miatt – az átlagos forgási periódusa 28 nap – az egyenlítőn a centrifugális erő 18 milliószor kisebb a felszínen ható gravitációs erőnél, emiatt a centrifugális erő alaktorzító hatása minimális. A bolygók gravitációs ereje sem befolyásolja mérhetően a Nap alakját, mert egyrészt túlságosan is távol vannak a Naptól – a tömegközéppontok távolsága a nap átmérőjének sokszorosa, így az alakot befolyásoló gravitációs erőkülönbség elhanyagolható –, másrészt azok tömege még együtt is elenyésző a Napéhoz képest (a Nap tömege kb. 750-szer nagyobb, mint a gravitációs terében mozgó valamennyi bolygó és más égitest össztömege[12]).

Csillagunk az egyenlítőjén nézve nyugatról keletre, az északi pólusa felől vizsgálva az óramutató járásával ellentétes irányú tengely körüli forgást végez. Ez a tengely körüli forgás azonban nem hasonlít a Földnél tapasztaltakra, hanem bonyolult rendszert alkot. Különböző módon forognak például az égitest belseje és külső régiói. A sugara kb. 70%-áig lényegében merev testként forog, míg a felette levő régiókban a szélességi körök mentén „szétcsúszik” a forgás, az egyenlítői régiók előbb tesznek meg egy kört, míg a sarki régiók lemaradnak. Az átlagos forgási sebesség 2000 m/s, míg az egyenlítői és sarki régiók sebességkülönbsége ± 100 m/s. A nap egyenlítőjének síkja 7° 15' szöget zár be a Föld pályasíkjával (az ekliptika síkjával).[13] A Föld Nap körüli keringésének iránya megegyezik a Nap forgásának az irányával, így a Nap tengelyforgása a Földről nézve a valóságosnál lassúbbnak látszik, ezért kétféle forgási periódust szokás megkülönböztetni:

  • a szinodikus rotációs periódus, azaz a látszólagos forgási idő: 27,275 földi nap,
  • a sziderikus rotációs periódus, azaz a tényleges forgási idő pedig 25,380 nap a Nap egyenlítőtől 16°-ra fekvő területein.

Csillagunk plazma állapotban levő anyagból áll. Ebben a halmazállapotban az anyagot alkotó atomokról egy vagy több elektron leszakad és így a plazma ionok és szabad elektronok keveréke. A nagyobb sűrűségű régiók anyaga kétkomponensű folyadékként viselkedik, melynek összetevőit (az elektron- és az ion-folyadékot) elektromágneses erők kötik össze. A kisebb sűrűségű külső régiók esetén különösen furcsa jelenségek tapasztalhatók, mivel az egyes részecskék mozgása és a folyadékszerű viselkedés keveredik.[14] A folyadékszerű viselkedés okozta legfontosabb jelenség a R. Carrington[15] által felfedezett differenciális rotáció. A Nap a különböző szélességi körei mentén eltérő sebességgel forog, egyenlítői területei a centrifugális erő hatására gyorsabban forognak, mint a sarki területek. Az egyenlítői területek kb. 25, míg a sarkok környékén fekvők csak kb. 35 naponként fordulnak körbe.

A Napon megfigyelhető jelenségek szinte mindegyike a differenciális rotációhoz kapcsolható, amely az ezen jelenségeket létrehozó mágneses tevékenység létrejöttének fő mechanizmusa.

Csillagunk tengely körüli forgása nem stabil, az idők során lassul. A kezdetekor a Nap gyorsabban forgott a saját tengelye körül, majd az impulzusmomentum-megmaradás elve szerint lelassult és perdülete a bolygókba adódott át.

A Nap második vagy harmadik generációs csillag; a Naprendszer az univerzum csillagközi gázaiból és korábbi – szupernóvaként elpusztult – csillagainak maradványaiból jött létre. Ezt bizonyítja a nehéz elemek (vas, arany, urán stb.) jelenléte, ugyanis ezek az anyagok jellemzően szupernóva-robbanások során, vagy első generációs csillagokban alakulnak ki.[16]

Életciklusa

A Nap életciklusára ma csak elméleti modelljeink vannak, amelyek más csillagok megfigyeléséből, valamint holdkőzetek kormeghatározásaiból származó adatokból épülnek fel (a Nap keletkezésére vonatkozó korábbi hipotéziseket a tudományos megfigyelések meghaladták, ezekkel „A Naprendszer keletkezése és története” c. cikk foglalkozik). Ezek alapján ma a csillagászat tudomány úgy gondolja, hogy csillagunk 4,57 (± 0,11) milliárd évvel ezelőtt keletkezett,[17] és életpályája két fő szakaszt fog bejárni, egy aktív és egy passzív szakaszt. A választóvonal a két szakasz között a magban lejátszódó energiatermelés fennmaradása, vagy leállása lesz.

Az aktív szakasz

A Nap élete egy kiterjedt molekulafelhőben kialakuló protocsillagként kezdődött. A Tejútrendszerben számos gigantikus molekulafelhő fordult elő és fordul elő a mai napig, amelyek ún. csillagbölcsők is egyben. Egy-egy nagyobb külső behatásra (pl. a galaxisunk spirálkarjait alkotó lökéshullám-frontokon való áthaladáskor, vagy közeli szupernóva robbanások hatására), a felhőkben levő viszonylag sűrű anyagban inhomogenitások, anyagcsomók jöttek létre, és az ilyen anyagcsomókban összeomló gáz- és poranyag elkezdett még inkább összecsomósodni. Az egy pont felé zuhanó, sűrűsödő anyag melegedni kezdett, a gravitációs összehúzódás során egyre több hő szabadult fel, extrém módon felmelegítve az anyagot. Egy ilyen egyre jobban összezsugorodó anyagcsomóból, ún. globulából kb. 500 000 év alatt jött létre a proto-Nap. Ez a protocsillag még vörösen fénylett, ám középpontjában elérte a hőmérséklet a néhány millió fokot és elkezdődött benne a hidrogénfúzió. Ehhez a folyamathoz mindössze néhány millió év kellett.[18][19]

A proto-Nap megszületése után még tovább zsugorodott és melegedett, ám csak további pár ezer év kellett, hogy létrejöjjön a gáznyomás és a gravitáció egyensúlya. Amikor ez az egyensúly stabilizálódott, a Nap belépett az ún. fősorozati állapotba. Ez csillagunk köznapi értelemben vett működésének szakasza: a magban a hidrogén héliummá alakul át. Élete során a Nap mintegy 10 milliárd évig számít fősorozatbeli csillagnak, és ebből 5 milliárd év már eltelt.[18]

Várhatóan 4–5 milliárd év múlva vörös óriássá duzzad: az üzemanyagként szolgáló hidrogén mennyiségének csökkenése miatt megbomlik a gáznyomás és a gravitáció évmilliárdos egyensúlya, a nyomás lecsökken, a Nap teste elkezd összehúzódni. Amikor az összehúzódás során felszabaduló gravitációs energia miatt a hőmérséklet tovább emelkedik a magban és elegendő lesz a hélium „égetéséhez” (további, szenet eredményező fúziójához), a más típusú fúzió még több energiát szabadít fel a magban – nagyjából 100 milliárd fokra hevíti a magot – és a nyomás ismét megnövekszik, a felszabaduló energia felfújja a Napot. A Nap külső határa különböző modellek szerint ekkorra a Föld jelenlegi pályáján túl fog kinyúlni. A Nap vörös óriássá válik, mivel felszíne jóval nagyobb lesz, így a magban termelődő energia sokkal nagyobb felületen oszlik szét, kevésbé melegítve fel ezt a nagyobb felszínt, ami miatt a fénye gyengébb, „vörösesebb” lesz. Ez a fázis a fősorozati léthez képest nagyjából egy nagyságrenddel kevesebb ideig, 1 milliárd évig tart majd.[20]

A Nap a vörös óriás fázisban el fogja veszíteni anyagának nagy részét (és így – a gyengülő gravitáció miatt – addigra a Föld már egy távolabbi pályán fog keringeni, elkerülve a megsemmisülést.[21]) Csillagunk héliumégető fúziója nem lesz olyan stabil folyamat, mint a fősorozati energiatermelésé volt, így ezek az instabilitások felfúvódások és összehúzódások sorozatát váltják ki (amilyeneket a csillagászat az ún. változócsillagokon figyel meg napjainkban is), amelyekben a Nap gázanyagának külső héjai leválnak, ezzel okozva az említett tömegvesztést.[20]

A passzív szakasz

Miután a Nap az összes üzemanyagát eltüzelte, leáll a fúzió, a gáznyomás megszűnik, teret engedve az egyedül fennmaradó gravitációs erőnek és csillagunk belseje összeroskad, és fehér törpévé válik. Eközben a pulzálások során korábban leszakadt külső rétegeiből planetáris köd képződik, amely lassan tágul és végül elenyészik. Az összeroskadó mag egy rendkívül kompakt égitestként, voltaképpeni fehér törpeként marad fenn: a fennmaradó, nagyjából 0,6 naptömegnyi anyag egy Föld méretű gömbben sűrűsödik össze. A mag összeroskadása ismét energiát termel, ám az nem elegendő a szén további, még nehezebb anyagokat létrehozó fúziójához, így minden további energiatermelésnek vége szakad, a Nap csak a maradék energiáját sugározza ki. Ez a hősugárzó fázis ismét milliárd-tízmilliárd év hosszú folyamat lehet (az Univerzum jelenlegi, kb. 13,7 milliárd éves koránál fogva lényegében még nincs olyan fehér törpe, amely ennek a fázisnak végére érhetett volna).[22]

Legvégül az összes energia kisugárzását, az égitest lehűlését követően a Napból egy fekete törpe válik majd. Ez egy kihűlt, passzív „csillagtetem”, amely mindössze gravitációs hatást gyakorol majd a környezetére. A jelenlegi kozmológiai modellek szerint ez az égitest akár végtelen hosszú élettartamot is megérhet, hiszen az Univerzum legvégsőbb koráig is fennmaradhat, amely kor mai ismereteink szerint végtelen. Ezt a fennmaradást egyedül egy kozmikus karambol, valamely csillagnak, vagy fekete lyuknak ütközés akadályozhatja meg (igaz, ez bekövetkezhet a csillagfejlődés korábbi fázisaiban is).[22]

Mi nem lesz a Napból?

A Nap nem lesz vörös törpe, hisz a csillagkeletkezéskor több anyagot kebelezett be.

A mi Napunk nem fog szupernóvává alakulni, mert a tömege alatta marad az ehhez szükséges Chandrasekhar-határnak. Ebből következően sem neutroncsillag, sem fekete lyuk nem válhat a Napból.

A napciklus

A Nap aktivitása 11,2 éves periódust mutat, azaz átlagosan ennyi idő telik el két napfoltmaximum között. A napciklus elején a napfoltok a 30–45°-os szélességen jelennek meg, később az egyenlítő felé egyre közelebb. Új napfoltciklus során a vezető és követő napfoltok polaritása felcserélődik. A napfoltciklus felfedezése H. Schwabe csillagász nevéhez fűződik. Az első napciklust a csillagászok 1760-tól számítják.

A Napot megfelelő szűrőkön keresztül megfigyelve láthatóvá válnak a napfoltok. Feltűnően sötét színüket az okozza, hogy hűvösebbek – bár csak 1-2 ezer fokkal – az őket körülvevő anyagnál, mert a körülöttük levő igen erős mágneses tér megakadályozza a hőátadást. A napfoltok belső részén sötétebb terület (umbra) található, ezt övezi a világosabb zóna, a penumbra. Átmérőjük a több tízezer kilométert is elérheti (általában 2–3 földátmérő), gyakran kiindulópontjai intenzív flereknek és a koronában látható hatalmas napkitöréseknek.

A megfigyelhető napfoltok száma nem állandó; a tizenegy évig tartó napciklus során változik az intenzitásuk. A napciklus minimumán csak néhány látható, de időnként megesik, hogy egy sem. Később az egyenlítő két oldalán szimmetrikusan, magas szélességi körökön jelennek meg, és az egyenlítő felé vándorolnak, miközben újabbak alakulnak ki. A két féltekén található napfoltok általában párokban jelennek meg, és környezetükben ellentétes előjelű a mágneses töltés. A napciklus végén, az északi és déli mágneses pólusok felcserélődésekor látható a legtöbb napfolt.

A mágneses pólusok legutóbbi felcserélődése 2001 nyarán volt, amit az egy teljes napcikluson át működő Ulysses űrszonda is megfigyelt. Sikerült megállapítani továbbá, hogy a Nap déli mágneses pólusa instabil; valójában több pólus létezik, egy nagyobb területen szétszórva.

A napfolttevékenység erőssége szintén szabálytalanul változó intenzitást mutat; az 1600-as évek során például a ciklusoktól függetlenül is rendkívül kevés napfoltot figyeltek meg, egyes feltételezések szerint részben ez okozta az akkori hűvösebb időjárást.

A napciklus jelentősége a Föld szempontjából abban mutatkozik meg, hogy a Földet elérő zavaró és káros hatások milyen mértékűek lesznek. Ezek a napciklus elején minimálisak, a ciklus közepe táján erősebbek.

Bár a Nap 24. napciklusa hivatalosan 2008. január 4-én megkezdődött (ekkor észlelte a SOHO űrszonda az első napfoltot), a 2008-as és 2009-es év az elmúlt 50 év egyik leghosszabb napfoltmentes időszakának számít. A következő napfoltmaximum 2013-ban volt várható.[23]

Belső felépítése

A Nap szerkezetének főbb rétegei

A szilárd felszín hiánya miatt nem lehet pontosan meghatározni, hogy hol húzódik a Nap határa: a középpontjától kifelé haladva folyamatosan csökken a sűrűsége. A Nap sugarát a középponttól a fotoszféráig mérik, mert ez a legkülső olyan réteg, ami még elég sűrű ahhoz, hogy ne legyen átlátszó. A Nap anyagának többsége a központból mérve a sugarának 70%-án belül található és bár ezeket a belső területeket nem lehet közvetlenül megfigyelni (ugyanis a Nap anyaga nem enged át semmilyen elektromágneses sugárzást), fizikai modellekkel és az égitest rezgéseit vizsgáló helioszeizmológia módszerével mégis pontos képet alkothatunk a belső szerkezetéről, rétegeiről.[24]

Tisztán elméleti úton (fizikai modelleken keresztül) is fontos információkhoz lehet jutni a Nap belsejében uralkodó viszonyokkal kapcsolatban, olyan adatokból kiindulva, mint a tömege, átmérője, fényessége stb. Egy, a Naphoz hasonló gázgömbnek a felépítését három erő határozza meg; a gáznyomás, a sugárzási vagy fénynyomás és a gravitáció.

A gáznyomás és a fénynyomás önmagukban a Nap felfúvódását, szétszóródását okoznák. A fénynyomás a fénykvantumok abszorpciójakor jön létre, azonban a Nap esetében ez az erő a gáznyomáshoz képest csekély, csak az óriáscsillagok esetében van nagy jelentősége. A gravitáció az előbbi két erővel ellentétes hatású, de önmagában azt eredményezné, hogy az egymáson elhelyezkedő gázrétegek saját súlyuk alatt összeroskadnának, a Nap önmagába omlana.

Mivel egyik szélsőséges eset sem következik be, nyilvánvaló, hogy a három erő mechanikai egyensúlyban van; a Nap belsejének minden pontjában a gáznyomás és a fénynyomás erejének összege megegyezik a gravitációéval. Továbbá sugárzási egyensúly is jelen van; a belső rétegekben termelődött sugárzásnak el kell hagynia a Napot, a felszínből a központ felé haladva pedig folyamatosan nő a felsőbb gázrétegek vastagsága és ezzel együtt a tömege, az egyensúlyi állapot miatt viszont a gáznyomásnak is növekednie kell. Ezen alapelvek segítségével a Nap belsejében uralkodó állapotokat jellemző adatok kiszámíthatóak. Az ezt az egyensúlyt, annak összetevőit, hatásmechanizmusát és matematikai leírását Standard Napmodell néven említi az asztrofizika.[25]

Az elméleti számítások mellett a gyakorlati megfigyelések is nélkülözhetetlenek, segítségükkel több, részletesebb és pontosabb adatot lehet megtudni. Ahogyan a földrengések természetéből szeizmológiai módszerekkel lehet következtetni a Föld belsejében zajló folyamatokra, úgy ehhez hasonlóan a napszeizmológia (helioszeizmológia) a Nap felszínén tapasztalható jelenségek tanulmányozásával következtet a mélyebb rétegek szerkezetére. Fontos szerephez jutnak ebben a munkában a napkutató űrszondák.

A mag

A Nap fő energiaforrása a proton-proton ciklus, mely során négy protonból lesz egy hélium (4He)

A mag a sugár 20%-án belül eső teret jelenti, és ez a Nap egyetlen olyan része, amelyet közvetlenül a magfúzió fűt, a többi réteg az innen kiáramló energiának köszönheti hőmérsékletét. A magban keletkezett összes sugárzás áthalad a felette levő rétegeken, mielőtt elérné a fotoszférát és kijutna a világűrbe.

A Nap középpontjában a sűrűség eléri az 1,5·105 kg/m³, a hőmérséklet pedig a 15·106 (15 millió) kelvin értéket. Hogy jobban érzékelhető legyen: a csillagunk központjában levő gáz (plazma) 150-szer sűrűbb a víznél és kb. fél liternyi Nap anyag tömege annyi, mint egy átlagos emberé.[26] A rendkívül magas hőmérséklet és nagy sűrűség hatására termonukleáris reakció (magfúzió) jön létre, melynek során minden négy hidrogénatom egyesüléséből egy héliumatom keletkezik, miközben energia szabadul fel. Másodpercenként átlagosan 8,9·1037 hidrogénatom (600 millió tonna hidrogén) egyesül, ami 383·1024 watt teljesítmény felszabadulásával jár.[27]

A magban zajló láncreakció intenzitásának állandóságát önszabályozó mechanizmusok segítik; a reakció továbbterjedése az egyesülő atommagok nagyobb aránya miatt a mag felhevüléséhez, és a megnagyobbodásához vezetne, de a felsőbb rétegekben található nagy mennyiségű semleges anyag beáramlása csökkenti a fuzionáló atomok arányát, lecsillapítva ezzel a reakciót, ami idővel visszaáll a normális szintre.

A nagy energiájú fotonok (gamma- és röntgensugárzás) számára hosszú időt vesz igénybe ez az út; a mag anyaga elnyeli és – alacsonyabb energiával – újra kisugározza őket. A fotonok utazási idejére vonatkozóan a számítások igen eltérő eredményeket adnak; 17 ezer – 50 millió év között. Miután sikerül a magból kijutniuk és a konvekciós rétegen is áthaladtak, a fotonok látható fény formájában távoznak; minden egyes gamma részecske több millió látható fény fotonra bomlik a Napból történő kilépése előtt.

A neutrínók szintén a magfúzió során keletkeznek, de nagy áthatoló képességüknek köszönhetően ritkán lépnek kapcsolatba a környező anyaggal, ezért szinte azonnal távoznak a Napból. A neutrínók kísérleti kimutatása szolgáltatta a végső bizonyítékot a Nap magjában zajló magfúziós elmélet valós voltára. Az évekig tartó mérések során viszont elméletileg várható neutrínómennyiség harmadát sikerült csak kimutatni, és csak a közelmúltban született meg a neutrínóoszcilláció jelenségének felfedezése, amely megmagyarázta a neutrínóhiányt. (Lásd: A napneutrínók rejtélye).

Termonukleáris reakció

A Nap energiájának forrását az 1930-as években értették meg, amikor Hans Bethe, George Gamow és Carl Friedrich von Weizsäcker azonosította a lényeges nukleáris reakciókat.

Az energiatermelés termonukleáris reakciók révén folyik, amelyekben hidrogén alakul át héliummá. A termelődő energia 98,5%-át az úgynevezett „p-p lánc”, a fennmaradó 1,5%-ot pedig a CNO-ciklus adja (CNO = szén-nitrogén-oxigén). Ezen reakciók során a tömeg 0,7%-a sugárzássá alakul (amit Albert Einstein E = mc² tömeg-energia-ekvivalencia egyenlete ír le).

A fő energiatermelő folyamatként azonosított p-p lánc lefolyása két hidrogén-atommag (proton) egyesülésével kezdődik (erre az egyesülésre átlagosan 5 milliárd évet kell várniuk az atommagoknak), így deutérium (nehézhidrogén) képződik. Melléktermékként egy pozitron és egy neutrínó keletkezik. A pozitron azonnal összeütközik egy elektronnal, és energiává (fotonná) alakul. Ezután csak 1,4 másodpercet kell várni, hogy a deutérium egy újabb protonnal egyesüljön és hélium-3 (³He) jöjjön létre. Ezután átlagosan 240 000 év telik el, míg két hélium-3 egyesül, létrehozva a folyamat végtermékét, a héliumatomot (4He), valamint felszabadítva két hidrogénatomot (protont). A folyamatnak létezik egy másik ága, amelyben láncreakciók során berillium (7Be) és lítium (7Li) is részt vesz végül természetesen ebből is hélium (4He) keletkezik.[26]

A folyamat matematikai leírása:

p + p → 2H + e+ + e
2H + p → 3He +
3He + 3He → 4He + p + p

vagy

3He + 4He → 7Be +
7Be + e-7Li + e
7Li + p → 8Be + 4He + 4He

Francis William Aston mutatta ki 1920-ban, hogy megmérve 4 hidrogénatom és 1 héliumatom tömegét, a kettő között nem áll fenn egyenlőség (a hidrogénatomok valamivel nehezebbek),[28] a kettő közti különbség, nagyjából 0,7%, az a tömeg, amely energiává, fotonokká alakul át. Jelenleg a Napban másodpercenként 600 millió tonna hidrogén lép reakcióba, és 596 millió tonna hélium keletkezik, a különbözetet jelentő 4 millió tonna anyagból teljes egészében energia lesz.[26]

A Nap teljes élettartama a rendelkezésre álló tömeg és a fényesség alapján a következőképpen becsülhető:

t0 ≈ 0,1 × 0,007 m0c2 / L0 ≈ 1010 év (10 milliárd év), ahol azt feltételezzük, hogy a Nap tömegének 0,1 része vesz részt a fenti reakciókban, mivel csak a legbelsőbb magban van elegendően magas hőmérséklet a reakció fenntartásához.

A fúzió jelenlegi paramétereivel számolva a Nap 10 milliárd éves várható életkorának felénél járunk, mivel nagyjából még 5 milliárd évre elegendő a hidrogénkészlet a fúziós reakció táplálására.[26]

A sugárzási zóna

Körülbelül a sugár 20–70%-a közötti gömbhéjban helyezkedik el a sugárzási zóna. Ez a régió az energiaáramlás módjáról kapta a nevét: ebben a rétegben az anyag még elég sűrű és forró ahhoz, hogy a magban keletkezett energia sugárzás, nem pedig hőáramlás formájában haladjon át rajta (ezt az ionizált formában jelenlévő hidrogén teszi lehetővé). A hőmérséklet a magtól kifelé haladva folyamatosan csökken, de még így is rendkívül magas, az alsó „zónahatáron” 7 000 000 K, míg a felsőn 2 000 000 K. A hőmérséklet-csökkenés rátája alacsonyabb, mint a magasság növekedésével arányos hőcserementes hőmérséklet-csökkenés rátája, ezért nincsenek konvekciók az anyagban. Az anyag sűrűsége a hőmérséklethez hasonlóan csökkenő karakterisztikát mutat, csak sokkal erőteljesebb mértékben. A sűrűség 20 g/cm³-ről (hozzávetőleg az arannyal megegyező értékről) 0,2 g/cm³ értékre ( a víz sűrűségének ötödére) csökken, azaz a hőmérséklet harmadnyira csökkenésével szemben 100-szoros a csökkenés rátája.[29]

A sugárzási zóna egyik érdekes tulajdonsága, hogy „feltartja” a fotonokat. A magban keletkező energia fotonok és neutrinók formájában megy végbe, amelyek kifelé indulnak a magból, át a napbelső többi részén, majd szabadon tovább az univerzumba. A nagy áthatoló képességű neutrínók gyakorlatilag szinte akadály nélkül jutnak ki a Napból, ám a fotonok a sűrű sugárzási zónában sorozatos ütközéseken mennek keresztül. Az egy foton által megtehető ún. közepes szabad úthossz, mindössze 2 cm (azaz 2 cm-nyi mozgás után a foton beleütközik egy másik atomba, vagy ionba), amely után a foton visszapattan, szóródik. A foton ide-oda pattogása nyomán átlagosan kb. 1 millió év telik el, mire végül az általa hordozott energia kijut a Napból.[30][31]

Tachoklína

A helioszeizmológia legfrissebb felfedezése, egy vékony átmeneti réteg a sugárzási és a konvektív zóna között. Ez a réteg jelenti az átmenetet a merev testként forgó belső régiók és a differenciális rotáció jellemezte külső tartományok között. A korábbi feltételezések úgy tartották, hogy a differenciális rotáció átmenete a merev forgásba egy széles tartományt érintő folyamat, ám a legújabb helioszeizmológiai mérések egy meglepően vékony, a Nap sugarának mintegy 4%-át kitevő gömbhéjat mutattak, amelyben mindez végbemegy. Ráadásul az új mérési eredmények arra is rámutattak, hogy valószínűleg ez a réteg a napdinamó, azaz a Nap mágneses mezejének forrása, mivel itt fordulnak elő a különböző rétegek közötti legnagyobb sebességkülönbségek.[32][33]

Mivel a napbelső övekre osztását az energiatranszport módja alapján szokták meghatározni, a tachoklínát szokás a sugárzási zóna részének is tekinteni, mivel az energiaáramlás itt is még sugárzás formájában történik.

A konvekciós zóna

A Rayleigh-Bérnard hatás mechanizmusa

A konvekciós zóna a napbelső legkülsőbb tartománya, értelmezéstől függően a sugár 70%-ától kifelé elterülő, a felszín alatti mintegy 200 000 km vastag gömbhéjat jelenti. Ez a réteg már nem elég sűrű és forró ahhoz, hogy az energia sugárzás formájában haladjon át rajta, mivel az alsóbb rétegektől eltérően itt már nem elég magas a hőmérséklet az anyag ionozáltan tartásához, a gázok csak részlegesen ionizáltak, amelyek így elnyelik a sugárzás egy részét. Az energia hővezérelt anyagáramlások, konvekciók formájában terjed tovább a napfelszín felé.

A konvekciók a folyadékoknál megfigyelt Rayleigh-Bérnard hatás révén jönnek létre úgy, hogy a gázok legkülső rétegét a hőmérsékleti szempontból homogénnek tekinthető alsóbb rétegek folyamatosan fűtik, míg a réteg külső határán hűtő hatás érvényesül. Emellett az anyagban hőmérséklet-különbségek jönnek létre a hő elnyelődésének kisebb különbözőségeiből. Egyes tartományok jobban felmelegszenek, mások kevésbé, így a melegebb részek sűrűsége a környezeténél kisebb lesz, ezért ez a hígabb, melegebb anyag felfelé kezd emelkedni, konvektív cellákat (feltörekvő anyagáramlatokat) alkotva. Az anyag egészen a felszínig emelkedik, a bennük levő energia szétsugárzódik, míg maga az anyag lehűl, átadva a helyét az újabb, feltörekvő hőoszlopnak, míg maga a kihűlt anyag az áramlat szélén lefelé süllyed. A gáz ilyen módon való fel-le „liftezése” a konvekció, míg maguk a belül forró, kívül hideg „buborékok” okozzák a fotoszféra granulációját (lásd lejjebb).[33][34]

Differenciális rotáció

A konvekciós zóna fő sajátossága, hogy a benne levő anyag a csökkenő sűrűség miatt elveszti szilárdtestkénti viselkedését és a Nap tengely körüli forgása ebben a gömbhéjban átmegy differenciális rotációba. Ez a forgás kétféle differenciálódását is jelenti, egyrészt hogy csillagunk egyenlítői és sarki régiói eltérő sebességgel tesznek meg egy-egy fordulatot (ez az ún. szélességi differenciális rotáció), másrészt azt, hogy a felszín anyaga és a mélyebben levő anyag is eltérő sebességgel tesznek meg egy fordulatot (ez pedig az ún. mélységi differenciális rotáció).[35]

Meridionális cirkuláció

A nagy szállítószalag mozgása a Nap felszínén

A meridionális cirkuláció, vagy népszerű nevén a „nagy szállítószalag” egy hatalmas, forró plazmaáramlás a Nap felszínén. A plazma cirkulációja az egyenlítőre merőleges síkban, azaz a meridiánsíkban jön létre, összekeverve az egyenlítői és a sarki régiók anyagát (hasonlóan a Föld Golf-áramlatához, csak attól természetesen teljesen más mechanizmusok hatására). A Nap felszínén a meridionális áramlás igen gyenge (összehasonlítva a differenciális rotáció nagyságával csak kb. 20 m/s). Irányát tekintve a felszínen az egyenlítőtől a pólus felé tartó áramlás a Nap belsejében visszafordul, mélysége eléri a 200 000 km-t és ott egy a pólustól az egyenlítő felé tartó áramlás alakul ki. A Nap belsejében, ahol a sűrűség jóval nagyobb, az áramlás már lassabb, kb. 1–2 m/s körüli érték.

Az áramlásrendszernek két ága van, egy északon és egy délen. Sebességét 1996 óta mérik a SOHO műhold segítségével, mindegyik mintegy 40 év alatt tesz meg egy kört. A kutatók szerint a szalag mozgása befolyásolja a napfoltciklust, illetve a napfoltok megjelenését. 2000 és 2010 között a sebessége megnőtt, a kutatók ezt összefüggésbe hozzák az ugyanebben az időszakban tapasztalható eddigi legnagyobb napfolt-minimummal.[13][36]

Atmoszféra

Mágneses ívkisülés extrém ultraibolya fényben 2010. július 6–8-án

Mivel a Nap egy ionizált gázgömb (plazmagömb), nincs éles felszíne, a rendkívül nagy sűrűségű mag és a végtelenül ritka napkorona között folyamatos a sűrűségbeli átmenet. A napfelszín és a légkör határának mégis létezik egy fizikailag jól definiálható meghatározása, értelmezése: a Nap „felszínének” egyezményesen azt a felületet tekintjük, ahonnan egy 500 nm hullámhosszú (ez kb. a látható színtartomány közepének felel meg) foton függőlegesen felfelé mozogva


Zdroj: Wikipedia.org - čítajte viac o Nap





A lap szövege Creative Commons Nevezd meg! – Így add tovább! 3.0 licenc alatt van; egyes esetekben más módon is felhasználható. Részletekért lásd a felhasználási feltételeket.