Figyelmeztetés: Az oldal megtekintése csak a 18 éven felüli látogatók számára szól!
Honlapunk cookie-kat használ az Ön számára elérhető szolgáltatások és beállítások biztosításához, valamint honlapunk látogatottságának figyelemmel kíséréséhez. Igen, Elfogadom

Electronica.hu | Az elektrotechnika alapfogalmai : Elektrotechnika | Elektronika



...


...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Nagy Hadronütköztető
 
Az LHC dipólmágnese, jól látható a két nyalábcső helye

A Nagy Hadronütköztető (LHC: Large Hadron Collider) a CERN 2008-ban átadott részecskegyorsítója és ütköztetőgyűrűje, amely a 2000-ben leállított LEP 27 km kerületű alagútját használja fel. Több előgyorsító fokozat után ebben a gyorsítóban fognak végleges 7 TeV‑os energiájukra gyorsulni a protonok (illetve időszakonként ólomionok) mindkét körüljárási irányban. Ezután a protonnyalábok több órán keresztül keringenek majd egymással szemben, és a gyorsító kerületén található detektorok közepén az egymással szemben keringő protonnyalábok pályáját úgy módosítják majd, hogy ott proton–proton ütközések fognak történni. A sikeres nyalábtesztek után.[1][2] 2008. szeptember 10-én kezdte meg a működését.[3] Az ütköző részecskék energiáját az elindítás után fokozatosan növelik, s amikor eléri a végleges, 7 TeV energiát, ez lesz a legnagyobb energiájú gyorsító.

A kísérlet kutatási céljai

A Higgs bozon egyik várható keletkezési módjának Feynman-gráfja. Itt két kvark kibocsát egy W‑ vagy Z‑bozont, amelyek semleges Higgst hoznak létre.
A CMS szimulált eseménye, talán ilyennek fogjuk „látni” a Higgs-bozont. Az LHC-ben jóval több nyom lesz az egyes eseményeknél, mint annak idején a LEP-nél. Ott ugyanis leptonokat ütköztettünk, itt pedig kvarkokból álló hadronokat fogunk.

Működése során nagyjából 80 állam 7000 fizikusa fog hozzáférni az LHC-hez. A fizikusok azt remélik, hogy közelebb jutnak a következő kérdések megválaszolásához az LHC kísérleteivel:

A gyorsító elhelyezkedése

A gyorsító egy 27 km kerületű kör alakú föld alatti alagútban helyezkedik el, a felület domborzati viszonyaitól függően 50-150 méter mélyen.[4] A korábbi nagy elektron–pozitron ütköztetőgyűrű (LEP) alagútját hasznosítja újra. A 3 méter átmérőjű alagút négy helyen keresztezi a svájcifrancia határt; hosszának legnagyobb része francia területen fekszik. Az ütköztető maga ugyan a föld alatt helyezkedik el – mivel így csökkenthetők a területbérleti díjak és a mérést zavaró kozmikus sugárzás –, több felszíni épület is van, amelyek olyan kiegészítő berendezéseket tartalmaznak, mint a kompresszorok, a ventilátorok, a vezérlő elektronika és a hűtőtelep.

A gyorsító főbb jellemzői

A gyorsító egy szinkrotron, mely kör alakú pályán gyorsítja fel a részecskéket a fénysebesség közelébe. A részecskék a kerület mentén több csomagban keringenek, a gyorsító ezeket a részecskecsomagokat több óráig keringeti mindkét irányban két olyan csőben, amelyben nagy vákuum van. Az ilyen gyorsítót – amelyben hosszú ideig keringenek a részecskék – nevezzük tárológyűrűnek (storage ring). A gyorsító kerületén négy nagy detektor található, azok középpontjában a részecskenyalábok pályáját keresztezik, lehetővé téve a részecskék ütközését. Kétféle ütközést hoznak létre: egyikben protont ütköztetnek protonnal, protononként 7 TeV energiával (azaz az ütközés során 14 TeV energia szabadul fel), másikban ólomatommagot ólomatommaggal 1312 TeV energiával. A felgyorsított protonoknak akkora mozgási energiájuk lesz, mint egy repülő szúnyogé, csak sokkalta kisebb tömegen. A teljes kerület mentén – folytonos nyaláb helyett – 2835 protoncsomag fog keringeni mindkét irányban, egyenként nagyjából 1011 darab protonnal, és teljes üzemben 25 ns-onként fogják egymást keresztezni a nyalábok: ilyenkor várható ütközés.

Az LHC egyedülálló mérnöki kihívást jelentett egyedülálló biztonsági előírásokkal. Üzemelése alatt a mágnesekben tárolt összes energia 10 GJ, a nyalábok összenergiája pedig 725 MJ. A nyalábenergia jellemzésére álljon itt két adat. Ha nyalábnak csak egy egész kicsi része a falnak ütközne, akkor megszűnne a szupravezetés a mágnesekben, tehát a nyalábvezető mágnesek szabályozásának nagyon fontos szerepe van. Amikor pedig pár órai keringés után a nyalábot kivezetik a gyorsítóból, annak energiája egész jelentős robbanással ér fel.

A proton energiája összefügg a sebességével.[5] A táblázatban jól látható, hogy a feszültséglökések hatására elsősorban az energia növekszik, a sebesség GeV felett már alig, fénysebességhez közelít.

Energia Sebesség mint a fénysebesség törtrésze
1eV 0,00005
1 MeV 0,046
1 GeV 0,876
1 TeV 0,99999956
7 TeV 0,999999991 (LHC)

Az LHC mint ionütköztető

Az LHC fizikai programja főként a proton–proton ütközéseken alapul. Rövidebb időre azonban – tipikusan évente egy hónapban – nehézion-ütközések is szerepelnek a programban. Bár könnyebb elemekkel is dolgoznak majd, az alapterv az ólomionokkal (Pb) dolgozik.[6] Ez lehetővé teszi majd a jelenleg a relativisztikus nehézion ütköztetőnél (Relativistic Heavy Ion Collider, RHIC, BNL) folyamatban lévő program továbbfejlesztését.

Detektorok

Az LHC CMS detektorának építése

A részecskegyorsító kerületén 4 nagy részecskedetektor helyezkedik el. Két nagyobb általános célú detektor a CMS és az ATLAS. A másik kettő, az LHCb és az ALICE kisebb és speciálisabb feladatot lát el. Magyarország legnagyobb létszámmal a CMS kísérletben vesz részt, de az ALICE-ban, az ATLAS-ban valamint az LHCb-ben is vesznek részt magyarok. (A magyar részvételről egyelőre a CERN szócikkben olvashatunk. A magyar Wikipédiában a legrészletesebb leírás az ATLAS-kísérletről, több hasznos ábra a CMS szócikkben található.)

Számítástechnikai háttér

Évente körülbelül 10-15 petabyte adat tárolására lesz szükség: ezek azok az adatok, amelyeket az LHC detektorok programja „érdekesnek talál”. Várhatóan átlagosan minden tízbilliomodik (1013) érdekes eseményben fog Higgs-részecske keletkezni.

A nagy mennyiségű adat tárolására és feldolgozására a CERN fejleszti a Grid saját változatát, amely LCG (LHC Computing Grid) névre hallgat, és az adatok több helyen történő tárolását és elemzését szolgálja. A Központi Fizikai Kutató Intézete (KFKI RMKI) 2002 óta rajta van az LCG‑n. A Grid tulajdonképpen egy csomó összekapcsolt számítógép, melyeknek a processzoridejét a Grid rendszer közel optimálisan használja ki, ezzel sokkal gyorsabb számítást téve lehetővé, mint ha a gépek külön-külön dolgoznának.

Aggodalmak

Az LHC használatának ellenzői azzal érvelnek, hogy bizonyos elméletek szerint a meginduló kísérletek során kis méretű fekete lyuk keletkezhet, amely azután elnyeli az egész Földet. A bizonytalanság világméretű félelmet keltett (Indiában például egy időben százszorosára nőtt a templomok látogatóinak száma).[7] Az Emberi Jogok Európai Bírósága nem állíttatta le az LHC-t, mert fenntartotta a lehetőséget a veszélytelenség bizonyítására. A részecskefizikusok többsége szerint azonban csak olyan kicsi fekete lyukak jönnek majd létre, amelyek azonnal „elpárolognak”.

A veszélytelenség legerősebb "kísérleti" bizonyítéka, hogy a földet folyamatosan érő Kozmikus sugárzás részecskéinek energiája akár 1020eV is elérheti, ami az LHC-ben tervezett ütközések maximális energiájának több mint hétmilliószorosa, a Föld azonban mégsem pusztult még el.

2008. szeptember 15-én kiderült, hogy a berendezés számítástechnikai rendszere kívülről feltörhető, ezért a működését leállították.[8]

Meghibásodások

2008. szeptember 18-án a hűtőrendszer meghibásodott és emiatt leállították az LHC-t.[9] Egy 30 tonnás elem kicserélése után másnap újraindították a 6,4 milliárd euróba került berendezést,[10] de az egy nap alatt újra meghibásodott, és ezért két hónapra ismét leállították.[11] Majd az újraindítást 2009 márciusára várták, majd 2009 júliusára.[12][13][14][15]

A meghibásodás abban állt, hogy a szupravezető mágnesek hűtését biztosító csőrendszer elemeit a régi technológiának számító, de biztonságos bilincsek helyett egy új ragasztásos technológiával illesztették egymáshoz. Ezek nem bírták a szélsőséges hőmérsékleti körülményeket és elváltak egymástól és így mégiscsak bilincsekkel kellett rögzíteni őket. A felmelegedett rendszer néhány Kelvinre való lehűtése pedig több hónapot vesz igénybe.

Első eredmények

A világ legerősebb ütköztetője végül is működésbe kezdett.[16] Az ütköztető 2009 utolsó hónapjaiban nagy lépésekkel haladt előre.[17] Az első sugárnyaláb november 20-án járta körül az ütköztető teljes pályáját, előbb lassan, de gyorsan felgyorsult, délután 13:03-ra már 100 000 fordulatot tett meg, 13:07-kor 10 millió fordulatot. A második, ellenirányú sugárnyaláb 14:12-kor indult és 14:52-re érte el első fordulatát, de 15:27-re már 100 000 fordulatot tett meg. Az első ütköztetést 23-án dél felé figyelték meg a négy detektorban. November 24-én 540 GeV energiára, majd 29-én rekord 1180 GeV energiára gyorsították fel a részecskenyalábok protonjait. November 30-ra mindkét protonnyaláb protonjai elérték az 1,18 TeV energiát, december 14-én pedig 2,36 TeV energiával 50 000 ütköztetést figyeltek meg.[18]

A friss történések a CERN blogjában magyarul is nyomon követhetőek.[19]

Jegyzetek

  1. LHC synchronization test successful, 2008. augusztus 11. (Hozzáférés: 2008. szeptember 6.)
  2. Final LHC Synchronization Test a Success, 2008. augusztus 25. (Hozzáférés: 2008. szeptember 6.)
  3. CERN announces start-up date for LHC, 2008. augusztus 7. (Hozzáférés: 2008. szeptember 6.)
  4. Symmetry magazine Archiválva 2008. december 21-i dátummal a Wayback Machine-ben, April 2005
  5. The Energy and Speed of Particles. . (Hozzáférés: 2006. május 9.)
  6. Ions for LHC
  7. The CERN black hole – YouTube-videó; Pánikot okozott Indiában az LHC beindítása – Index, 2008. szeptember 10.
  8. Megtámadták a részecskegyorsító rendszerét – Index-cikk, 2008. szeptember 15.
  9. Leállították a részecskegyorsítót – Index-cikk, 2008. szeptember 18.
  10. Újraindították a részecskegyorsítót – Index-cikk, 2008. szeptember 19.
  11. Két hónapra leáll a nagy hadronütköztető – Index-cikk, 2008. szeptember 20.
  12. Large Hadron Collider to remain shut until middle of next year. Times Online, 2008. november 17. (Hozzáférés: 2008. november 18.)
  13. Tom Espiner: A longer delay for the Large Hadron Collider. CNET news, 2008. november 30.[halott link]
  14. LHC to restart in 2009. CERN Press Office, 2008. december 5. . (Hozzáférés: 2008. december 8.)
  15. Éledezik a nagy hadronütköztető – új fizikát kaphatunk karácsonyra – Origo, 2009. július 3.
  16. The Bulletin. CERN, 2009. december 14. (Hozzáférés: 2010. január 17.)
  17. https://twitter.com/cern/
  18. Megvoltak az első ütközések az LHC-ben
  19. A CERN blogja - magyarul is: http://cernblog.wordpress.com/. . (Hozzáférés: 2010. január 21.)

További információk

Hadronütköztetők: Múlt, jelen és jövő

Keresztező tárológyűrűk (ISR) CERN, 19711984
ISABELLE Brookhaven, 1993-ban leállították az építést
Szuper protonszinkrotron (SPS) CERN, 19761984
Tevatron Fermilab, 19872009
Szupravezető szuperütköztető (SSC) 1993-ban leállították az építést
Relativisztikus nehézion-ütköztető (RHIC) Brookhaven, 2000
Nagy Hadronütköztető (LHC) CERN, 2007
Nagyon nagy hadronütköztető (VLHC) 21. század közepe
Commons:Category:Large Hadron Collider
A Wikimédia Commons tartalmaz Nagy Hadronütköztető témájú médiaállományokat.
Információ forrás: https://hu.wikipedia.org/wiki/Nagy_Hadronütköztető
A lap szövege Creative Commons Nevezd meg! – Így add tovább! 3.0 licenc alatt van; egyes esetekben más módon is felhasználható. Részletekért lásd a felhasználási feltételeket.


Villamosmérnöki és elektronikai alapfogalmak - elektronica.hu
čítajte viac na tomto odkaze: Nagy Hadronütköztető



Hladanie..........................................................................................................................................................................................................................................................

Fájl:LHC octants.svg
ATLAS-kísérlet
Compact Muon Solenoid
LHCb
Lineáris gyorsító
Proton
Ólom
Protonszinkrotron-erősítő
Protonszinkrotron
Szuper protonszinkrotron
Sablon:LHC
Sablon:LHC
Sablonvita:LHC
Fájl:Closer look at an lhc dipole magnet in belgrade.jpg
CERN
2008
Részecskegyorsító
2000
LEP
Alagút
Elektronvolt
Energia
Proton
Ólom
Ion
2008
Szeptember 10.
Fájl:BosonFusion-Higgs.svg
Feynman-gráf
Kvark
W- és Z-bozonok
Fájl:CMS Higgs-event.jpg
Nagy elektron–pozitron ütköztetőgyűrű
Fizikus
Higgs-bozon
Elemi részecske
Tömeg
Barion
Standard modell
Szuperszimmetria
Antianyag
Kaluza–Klein-elmélet
Húrelmélet
Világegyetem
Csillagászat
Sötét anyag
Sötét energia
Gravitáció
Alapvető kölcsönhatás
LEP
Svájc
Franciaország
Szinkrotron
Proton
Elektronvolt
Ólom
Mozgási energia
Másodperc
Joule
Szupravezetés
Fénysebesség
Fénysebesség
Elektronvolt
Proton
Ion
Ólom
Brookhaveni Nemzeti Laboratórium
Fájl:Construction of LHC at CERN.jpg
Részecskedetektor
Compact Muon Solenoid
ATLAS-kísérlet
CERN
ATLAS-kísérlet
Compact Muon Solenoid
Byte
Higgs-részecske
Enabling Grids for E-sciencE
CPU
Mikro-feketelyuk
Föld
India
Emberi Jogok Európai Bírósága
Kozmikus sugárzás
2008
Szeptember 15.
Szeptember 18.
Euró
2009
Szupravezetés
2009
Internet Archive
Fájl:HadronColliderGeneric.svg
Hadron
Keresztező tárológyűrűk
CERN
1971
1984
Brookhaveni Nemzeti Laboratórium
1993
Szuper protonszinkrotron
CERN
1976
1984
Fermilab
1987
2009
1993
Relativisztikus nehézion-ütköztető
Brookhaveni Nemzeti Laboratórium
2000
CERN
2007
21. század
Fizikai Szemle
Internet Archive
Internet Archive
Category:Large Hadron Collider
Wikimédia Commons
Category:Large Hadron Collider
Sablon:Nemzetközi katalógusok/doc
Nemzetközi Virtuális Katalógustár
Kongresszusi Könyvtár
Integrált katalógustár
A Cseh Köztársaság Nemzeti Könyvtára
Updating...x




A lap szövege Creative Commons Nevezd meg! – Így add tovább! 3.0 licenc alatt van; egyes esetekben más módon is felhasználható. Részletekért lásd a felhasználási feltételeket.