Figyelmeztetés: Az oldal megtekintése csak a 18 éven felüli látogatók számára szól!
Honlapunk cookie-kat használ az Ön számára elérhető szolgáltatások és beállítások biztosításához, valamint honlapunk látogatottságának figyelemmel kíséréséhez. Igen, Elfogadom

Electronica.hu | Az elektrotechnika alapfogalmai : Elektrotechnika | Elektronika



...


...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Hullámfüggvény
 

A hullámfüggvény egy kvantummechanikai állapot (azaz kvantumállapot) jellemzésére alkalmazható matematikai eszköz. Bár a klasszikus mechanikai hullámegyenlet egy megoldásaként előálló hullámfüggvény analógiájára hozták létre, a kvantummechanikában némiképp más értelemmel bír: a kvantummechanikai hullámfüggvény egy igen kiterjedt módon alkalmazott általános matematikai formalizmus egy alapvető matematikai objektuma.

Definíció

A modern szóhasználatban a hullámfüggvény jelenthet bármilyen vektort vagy függvényt, amely egy fizikai rendszer állapotát írja le, általában a rendszer más állapotai – alapvektorai, bázisfüggvényei – szerint kifejtve. Tipikusan egy hullámfüggvény lehet:

,
  • komplex vektor végtelen sok komponenssel
,
  • egy vagy több valós változó komplex függvénye („folytonos indexű” komplex vektor) (például Schrödinger-kép)
.

Mindegyik esetben a hullámfüggvény a rendszer teljes leírását adja. Fontos azonban megjegyezni, hogy a rendszerhez rendelt hullámfüggvényt nem határozza meg egyértelműen az illető rendszer, mivel sok különböző hullámfüggvény is leírhatja ugyanazt a rendszert.

Interpretáció (függvény)

A hullámfüggvény fizikai interpretációja függ attól, hogy milyen összefüggésben használjuk. Számos példa található alább, mindegyiket megvizsgálva a fent megadott három esetre.

Egy részecske egy térdimenzióban

Egy részecskéhez egy dimenzióban rendelt hullámfüggvény egy olyan komplex függvény, amelyet a valós számegyenesen értelmezünk. A hullámfüggvény abszolútérték-négyzetét a részecske helyzetének (megtalálási) valószínűségsűrűségének tekintjük, ezért annak a valószínűsége, hogy a részecske helyének megmérése az intervallumba eső eredményt ad:

.

Ez a következő normálási feltételhez vezet:

.

Mivel a részecske helyzetének mérése mindenképpen eredményre kell, hogy vezessen, azt valahol meg kell találnunk.

Egy részecske három térdimenzióban

A három dimenziós eset analóg az egy dimenzióssal. A hullámfüggvény egy komplex függvény, amely a háromdimenziós Euklideszi téren van értelmezve, és az abszolutérték négyzetét háromdimenziós valószínűségsűrűség függvénynek tekintjük. Annak valószínűsége, hogy a részecskét a helyzetmérés során az térfogatban találjuk:

.

A normálási feltétel hasonló:

,

ahol az integrálás az egész térre kiterjed.

Két megkülönböztethető részecske három térdimenzióban

Ebben az esetben a hullámfüggvény hat (valós) térváltozó komplex függvénye:

,

és a két részecske pozíciójának együttes valószínűségsűrűségi függvénye. Annak a valószínűsége, hogy a két részecske helyzetének együttes mérése az első részecskét az R, a másodikat pedig az S tartományban találja:

,

ahol , is hasonló. A normálási feltétel ezért:

,

ahol az integrálás kiterjed mind a hat változó teljes értelmezési tartományára.

Alapvető fontosságú, hogy észrevegyük a következőt: Két részecskéből álló rendszer esetén csak a mindkét részecskét tartalmazó rendszernek kell jól definiált hullámfüggvénnyel rendelkeznie. Azaz, nem lehet olyan valószínűségsűrűség függvényt felírni, amely nem függ explicit módon a második részecske helyzetétől. Ez vezet a kvantumcsatolás jelenségéhez.

Egy részecske egydimenziós impulzustérben

Egy részecske hullámfüggvénye egy dimenzióban, impulzustérben (impulzusreprezentációban) egy, a valós számegyenes értelmezett komplex függvény. A mennyiség impulzustérben van értelmezve, ezért annak valószínűsége, hogy a részecske impulzusának mérése a intervallumba eső eredményre vezet:

.

Ez a következő normálási feltételhez vezet:







A lap szövege Creative Commons Nevezd meg! – Így add tovább! 3.0 licenc alatt van; egyes esetekben más módon is felhasználható. Részletekért lásd a felhasználási feltételeket.