Figyelmeztetés: Az oldal megtekintése csak a 18 éven felüli látogatók számára szól!
Honlapunk cookie-kat használ az Ön számára elérhető szolgáltatások és beállítások biztosításához, valamint honlapunk látogatottságának figyelemmel kíséréséhez. Igen, Elfogadom

Electronica.hu | Az elektrotechnika alapfogalmai : Elektrotechnika | Elektronika



...


...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Radián
 
A radián definíciója egységkörben:

A radián v. ívmérték a síkszögek egyik mértékegysége, amelyet a rad szimbólummal jelölnek. Dimenzió nélküli mennyiség, mivel két hosszúság hányadosa.

A radiánt jelenleg az SI származtatott egységekhez sorolják (korábban kiegészítő egységnek számították). A térszögek egysége a szteradián.

A matematikusok a szöget általában radiánban mérik, és a jelölést elhagyják. Ha fokot használnak, azt a ° jellel különböztetik meg.

Például , .

Definíció

1 radián az a szög, amely alatt a sugárral megegyező nagyságú ívhossz a középpontból látszik. Másképp: Vegyünk fel egy tetszőleges sugarú (R) körben egy középponti szöget! Ennek a szögnek az ívmértéke (radiánban mért értéke) legyen egyenlő az ív (i) és a sugár hosszának hányadosával. φ=i/R.

Számítása

Egy kör középponti szögének radiánban mért értéke kiszámolható, ha a hozzá tartozó ívhosszat elosztjuk a sugárral.

Egységnyi sugarú körben 1 radián annak a szögnek az ívmértéke, amelyhez éppen 1 hosszegységnyi körív tartozik. Egységkörben ezért a középponti szögek ívmértékének és ívhosszának mérőszáma mindig megegyezik. Ez meglehetősen kényelmessé teszi pl. a trigonometriai jellegű számításokat.

Átszámítás

A radiánból fokokba való átszámítás azon az elemi geometriai tételen alapul, miszerint a kör középponti szögei és azok ívhossza egyenesen arányos, azaz . Tudjuk, hogy a radián . Legyen radián egyenlő fokkal!

Ebből már a keresztbe szorzás módszerével ki tudjuk fejezni -t:

Honnan tudjuk, hogy a radián 180 fok? A szöghöz tartozó ív és sugár hányadosa megmutatja, hogy a szög hány radián, tehát . A körívet tekintsük a 360 fokhoz tartozó ívnek, ekkor , a sugarat pedig vegyük egységnyinek.

Tehát azt kapjuk, hogy a teljesszög (360°) ívmértéke . A pedig a fele, tehát 180°.

Története

A szögnek az ívhosszal való mérésének elvét talán Roger Cotes-nak köszönhetjük (1714).[1] Nála már minden ismert volt a radiánnal kapcsolatban, a nevét kivéve. Felismerte, hogy ez egy természetes szögmérték.

A radián kifejezés először 1873. június 5-én jelent meg nyomtatásban James Thomson (Queen's College, Belfast) által felvetett kérdések vizsgálata során. James Thomson Lord Kelvin bátyja volt. Ő már 1871-ben használta a kifejezést, míg 1869-ben Thomas Muir (St. Andrew's University) még habozott, hogy a rad, radial vagy radian alakot használja-e. 1874-ben Muir a radiánt fogadta el, miután konzultált James Thomsonnal.[2]

Hivatkozások

  1. Roger Cotes, MacTutor History of Mathematics. . (Hozzáférés: 2006. november 9.)
  2. Sources: Florian Cajori, 1929, History of Mathematical Notations, Vol. 2, pp. 147–148; Nature, 1910, Vol. 83, pp. 156, 217, and 459–460;

Kapcsolódó szócikkek

Információ forrás: https://hu.wikipedia.org/wiki/Radián
A lap szövege Creative Commons Nevezd meg! – Így add tovább! 3.0 licenc alatt van; egyes esetekben más módon is felhasználható. Részletekért lásd a felhasználási feltételeket.

Source: Radián





A lap szövege Creative Commons Nevezd meg! – Így add tovább! 3.0 licenc alatt van; egyes esetekben más módon is felhasználható. Részletekért lásd a felhasználási feltételeket.