Figyelmeztetés: Az oldal megtekintése csak a 18 éven felüli látogatók számára szól!
Honlapunk cookie-kat használ az Ön számára elérhető szolgáltatások és beállítások biztosításához, valamint honlapunk látogatottságának figyelemmel kíséréséhez. Igen, Elfogadom

Electronica.hu | Az elektrotechnika alapfogalmai : Elektrotechnika | Elektronika



...


...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Nukleoszintézis
 

A nukleoszintézis az a folyamat, mely új atommagokat hoz létre magfúzió (egyesülés) vagy maghasadás (radioaktivitás, neutronsugárzás) során. Számtalan olyan asztrofizikai folyamatot ismerünk, amelyet felelősnek tartanak a világegyetemben folyó nukleoszintézisért. Ezek közül a legfontosabbak a primordiális nukleonszintézis, a csillagokban zajló fúziós folyamatok, valamint az r-folyamat (r=rapid=gyors), az s-folyamat (s=slow=lassú) és a p-folyamat (p=proton). Ezek a folyamatok felelősek az elemek jelenlegi kozmikus eloszlásáért.

A nukleoszintézis főbb lépései

Az ősrobbanáskori nukleoszintézis

Primordiális (elsődleges) nukleoszintézisnek is nevezzük. Az univerzum első három percében zajlott le, és ez felelős a világegyetem jelenlegi 1H, 2H (vagy ahogy a nyomjelzéstechnikában és a jelen területen is gyakran jelölik: D), 3He és 4He izotópok kozmikus eloszlásáért.[1] Az elsődleges nukleoszintézisben jöttek létre a 2H, 3H 3He, 4He, 7Li, 7Be, 8B könnyű atommagok, melyek csak termikus egyensúlytól távol képződhetnek, igen magas hőmérsékleten. Ekkor a világegyetemet könnyű leptonok, protonok és neutronok alkották, melyek átlagos energiája 1011 kelvinen kT=10 MeV, ami sokkal nagyobb, mint a tömegkülönbség:

a protonok és neutronok ekkor a e + p+ ↔ no + νe és a p+ + anti-νe↔ e+ + n0 reakciókban egymásba alakulhatnak. Feltételezések szerint az egy fotonra eső leptonszám és elektromos töltés nagyon kicsi, ezért a négy folyamat egyforma valószínűséggel megy végbe. Ilyen egyensúlyi körülmények között a protonok és neutronok arányát a statisztikus fizika törvényei szabják meg, miszerint a nukleonok közel azonos mértékben vannak jelen (a neutronok részaránya 46%).

Az univerzum első perceiben a szabad protonok nagy számban jelen voltak, számuk 12-szerese volt a 4-es tömegszámú héliummagokénak. Ez az arány adta a többi elem keletkezésének lehetőségét. Ha a proton és a neutron közötti tömegkülönbség kisebb lenne, akkor a neutron felezési ideje hosszabb lenne, vagyis az összes proton He-4 maggá alakult volna. Protonok nélkül pedig nem ment volna végbe a nagyobb tömegszámú magok keletkezése.

Az univerzum tágulása és hűlése miatt a hőmérséklet a fent jelzett érték alá csökkent, nem keletkezhettek újabb neutronok, a meglévők pedig ~ 10 perces felezési idővel bomlani kezdtek (1). A hűlés az első percekben olyan gyors volt, hogy a hőmozgás az atommagok kötési energiájának (abszolút) értéke alá csökkent, aminek következtében a protonok neutronokat foghattak be (2). Az így létrejövő deutériummagok az esetek döntő részében protonokat befogva 3-as tömegszámú héliummagokká alakultak. Kisebb valószínűséggel játszódott le a (4) és a tríciummagot termelő (5) reakció.

A szintézis leggyakoribb folyamatai:

(1) (2)
(3) (4)
(5) (6)
(7) (8)
(9) (10)
(11)