Figyelmeztetés: Az oldal megtekintése csak a 18 éven felüli látogatók számára szól!
Honlapunk cookie-kat használ az Ön számára elérhető szolgáltatások és beállítások biztosításához, valamint honlapunk látogatottságának figyelemmel kíséréséhez. Igen, Elfogadom

Electronica.hu | Az elektrotechnika alapfogalmai : Elektrotechnika | Elektronika



...


...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Komplex számok
 

A komplex számok halmaza a valós számhalmaz olyan bővítése, melyben elvégezhető a negatív számból való négyzetgyökvonás (a valós számok halmazával ellentétben, ahol negatív számnak nincs négyzetgyöke), valamint ennek folyományaként más, valósokon belül nem értelmezett műveletek is értelmezhetővé válnak. A valós szám fogalmának ilyen általánosítását a 16. századi algebrai problémák (casus irreducibilis) vetették fel, később a komplex számok a matematika más területein és a fizikában is alkalmazhatónak bizonyultak.[megj 1]

A komplex számok megalkotása

A komplex számok halmazát vagy betűvel jelöljük. Imaginárius (képzetes) egységnek az egyik olyan komplex számot nevezzük, amelynek a négyzete −1. Ennek jele i. (A másik komplex szám, melynek négyzete −1, a −i.)

A komplex számok származtatásának három lehetséges módja alább olvasható.

Halmazelméleti modell Geometriai modell Algebrai modell
,

azaz olyan rendezett párok, melyeknek elemei valós számok, tehát az Descartes-szorzat.

, ahol az alakú leképezések közös kezdőponttal rendelkező síkbeli forgatva nyújtások (r a nagyítás mértéke, φ a szöge) , azaz a valós együtthatójú polinomok x2+1 polinommal történő osztásának maradékai. (Pontosabban az polinomgyűrű (x2+1) szerinti maradékosztályai)
Szorzás: Szorzás: Szorzás:
Itt a függvénykompozíció ( ), konkrétan a síkbeli leképezések egymásutánja a polinomok szorzása
Összeadás: Összeadás: Összeadás:
a képpontba mutató vektorok összege a polinomok összeadása
A szorzás egységeleme: A szorzás egységeleme: A szorzás egységeleme:
1 := (1,0) 1 := F = id (a nulla fokos forgatás) 1 := az azonosan 1 polinom
Az x2 = -1 egyenlet megoldása: Az x2 = -1 egyenlet megoldása: Az x2 = -1 egyenlet megoldása:
(0,1)(0,1) = (-1,0) = -(1,0) = -1 F+90°F+90° = F180° = – id = – 1 xx = x2 = (x2+1)-1 = 0-1 = -1

A három modellnek az a közös tulajdonsága, hogy mindegyik a valós számtest feletti 2 dimenziós vektortér, melyen egy szorzás is értelmezve van, ami az összeadással együtt testet alkot. Az ilyen algebrai struktúrát a valós számok testbővítésének nevezzük. Érvényes az a tétel, miszerint

a valós számok testének egyetlen olyan valódi testbővítése van, mely kommutatív és véges dimenziós.

Ezt az (izomorfizmus erejéig egyértelműen meghatározott) testbővítést a komplex számok halmazának nevezzük. A komplex számok fenti három értelmezése tehát kölcsönösen egyértelmű és művelettartó módon megfeleltethető egymásnak. Az előbbi tétel következményeként kijelenthetjük, hogy a komplex számok bizonyos értelemben a számkörbővítés utolsó állomásának tekinthető. Tovább csak úgy bővíthető a számkör, ha feladjuk a szorzás kommutativitását (kvaterniók) illetve ezen túl a szorzás asszociativitását (oktoniók).

Halmazelméleti modell

A rendezett valós számpárok összessége alkotja a komplex számok halmazelméleti modelljét. Az összeadást ebben a modellben az

formulával definiáljuk;

a szorzást a kissé légbőlkapott

egyenlőséggel. Ellenőrizhető, hogy ez az (R×R, +, ) matematikai struktúra valóban testet alkot a

0 := (0,0) additív neutrális elem és a
1 := (1,0) multiplikatív neutrális elem

választásával.

Érdemes még felírni az additív inverz elemet:

és a mutiplikatív inverz elemet minden nem nulla elem esetén:

A valós számtestet az

R R×R, a (a,0)

bijektív azonosítással kapjuk.

A kardinális kérdés, hogy melyik elem alkalmas -1 négyzetgyökének. A válasz (0,1) és (0,-1), mely közül i -vel jelöljük és imaginárius egységnek mondjuk a (0,1) elemet:

(0,1)2 = (0,1)(0,1) = (00 – 11,10 + 01) = (-1,0) = -1

Ez a modell a komplex számok összeadási tulajdonságát teszi szemléletessé, visszavezetve azt a vektorösszeadásra.

Geometriai modell

A közös kezdőpontú, síkbeli forgatva nyújtások alkotják a komplex számok geometriai modelljét. Minthogy ezek egy (Descartes-féle derékszögű, ortonormált) koordináta-rendszer választásával azonosíthatók bizonyos lineáris leképezésekkel, érdemes rögtön a mátrixukra áttérni. A φ szöggel elforgató, r-szeresére nyújtó leképezés mátrixa: