Figyelmeztetés: Az oldal megtekintése csak a 18 éven felüli látogatók számára szól!
Honlapunk cookie-kat használ az Ön számára elérhető szolgáltatások és beállítások biztosításához, valamint honlapunk látogatottságának figyelemmel kíséréséhez. Igen, Elfogadom

Electronica.hu | Az elektrotechnika alapfogalmai : Elektrotechnika | Elektronika



...


...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Impedancia

Az impedancia jelentése váltakozó áramú ellenállás. Váltakozó áramú elektromos hálózatban egy fogyasztó komplex impedanciájának nevezzük a komplex feszültség és a komplex áramerősség hányadosát, jele Z. Képlettel:

A komplex impedancia abszolút értékét látszólagos ellenállásnak nevezzük, jele Z. A látszólagos ellenállás mértékegysége az ohm.

A komplex impedancia értelmezése

A komplex feszültség és a komplex áramerősség (t = 0)

A komplex impedancia a definíció alapján

.

A képletekben U0 és I0 a feszültség, illetve az áramerősség csúcsértéke; ω a körfrekvencia; t az idő; α és β a feszültség, illetve az áramerősség fázisszöge; φ a fáziskülönbség a feszültség és áramerősség között. Az i az imaginárius egység (képzetes egység), az e az Euler-féle szám.

A látszólagos ellenállás

A komplex impedancia

Mivel a látszólagos ellenállás a definícióból adódóan a komplex impedancia abszolút értéke, ezért

.

Olyan váltakozó feszültségnél, amelynél az effektív értékek egyenesen arányosak a csúcsértékekkel (pl. a szinuszos váltakozó feszültségnél), a látszólagos ellenállás az effektív feszültség és az effektív áramerősség hányadosaként is kiszámítható:

.

A látszólagos ellenállás segítségével a komplex impedancia:

.

A hatásos ellenállás és a meddő ellenállás

A hatásos ellenállás és a meddő ellenállás

A komplex impedancia (mint bármely komplex mennyiség) valós és képzetes részre bontható. Valós része a hatásos ellenállás (rezisztencia), jele Rh; képzetes része a meddő ellenállás (reaktancia), jele X. Képlettel:

.

A hatásos ellenállás és a meddő ellenállás kifejezhető a látszólagos ellenállás, illetve a fáziskülönbség segítségével:

.

A fordított irányú összefüggések a látszólagos ellenállás, illetve a fáziskülönbség tangensének kiszámítására:

.

A hatásos ellenállásra és a meddő ellenállásra felírt összefüggések alapján a komplex impedancia:

.

Egyes eszközök impedanciája

Ohmos ellenállás impedanciája

Egy fogyasztót ohmos ellenállásnak nevezünk, ha egyenáramra vagy szinuszos váltakozó feszültségre kapcsolva a fogyasztón átfolyó áram erőssége egyenesen arányos a feszültséggel. Ha egy R ellenállású ohmos ellenállást szinuszos váltakozó feszültségre kapcsolunk, akkor a komplex impedancia:

.
Az ohmos ellenállás impedanciája

A hatásos ellenállás és a meddő ellenállás a komplex impedancia valós, illetve képzetes része alapján határozható meg. Eszerint az ohmos ellenállás hatásos ellenállása megegyeszik az egyenáramú ellenállásával

,

meddő ellenállása (reaktanciája) pedig nulla:

.

A feszültség és áramerősség azonos fázisban van egymással, azaz

.

Mindezek alapján az ohmos ellenállás komplex impedanciája:

.

Eszerint az ohmos ellenállás látszólagos ellenállása nem függ a frekvenciától.

Ideális tekercs impedanciája

Egy tekercset ideális tekercsnek nevezünk, ha ohmos (és kapacitív) ellenállása elhanyagolható, így szinuszos váltakozó feszültségre kapcsolva az áramerősséget csak az önindukció befolyásolja. Egy L önindukciós tényezőjű ideális tekercsnél Kirchhoff huroktörvénye miatt:

,

azaz

.

Ha a komplex áramerősség

,

akkor az előzőek miatt a komplex feszültség

,
Ideális tekercs impedanciája
Egy ideális tekercs látszólagos ellenállása a frekvencia függvényében

Ezek alapján a komplex impedancia:

.

A hatásos ellenállás és a meddő ellenállás a komplex impedancia valós, illetve képzetes része alapján határozható meg. Eszerint az ideális tekercs hatásos ellenállása nulla

,

meddő ellenállása (reaktanciája) pedig

.

Az ideális tekercsnél az áramerősség 90°-ot késik a feszültséghez képest, azaz

.

Az ideális tekercs látszólagos ellenállása:

.

Eszerint az ideális tekercs látszólagos ellenállása egyenesen arányos a váltakozó feszültség körfrekvenciájával, illetve frekvenciájával.

Az impedanciára kapott összefüggés jobb oldalát i-vel szorozva és osztva a komplex impedancia

alakban is felírható.

Ideális kondenzátor impedanciája

Egy kondenzátort ideális kondenzátornak nevezünk, ha ohmos (és induktív) ellenállása elhanyagolható, így szinuszos váltakozó feszültségre kapcsolva az áramerősséget csak a kapacitása befolyásolja. Egy C kapacitású ideális kondenzátort szinuszos váltakozó feszültségre kapcsolva a komplex feszültség:

.

Az áramerősség megegyezik a töltés idő szerinti deriváltjával, ezért a Q = CU összefüggést felhasználva

.

A fentiek alapján komplex áramerősség:

.
Ideális kondenzátor impedanciája
Egy kondenzátor látszólagos ellenállása a frekvencia függvényében

Ezek alapján a komplex impedancia:

.

A hatásos ellenállás és a meddő ellenállás a komplex impedancia valós, illetve képzetes része alapján határozható meg. Eszerint az ideális kondenzátor hatásos ellenállása nulla

,

meddő ellenállása (reaktanciája) pedig

.

Az ideális kondenzátornál az áramerősség 90°-ot siet a feszültséghez képest, azaz

.

Mindezek alapján az ideális kondenzátor látszólagos ellenállása:

.

Eszerint az ideális kondenzátor látszólagos ellenállása fordítottan arányos a váltakozó feszültség körfrekvenciájával, illetve frekvenciájával.

Komplex impedanciájú fogyasztókból álló kapcsolások

Az előzőkben felírt

Zdroj: Wikipedia.org - čítajte viac o Impedancia





A lap szövege Creative Commons Nevezd meg! – Így add tovább! 3.0 licenc alatt van; egyes esetekben más módon is felhasználható. Részletekért lásd a felhasználási feltételeket.