Figyelmeztetés: Az oldal megtekintése csak a 18 éven felüli látogatók számára szól!
Honlapunk cookie-kat használ az Ön számára elérhető szolgáltatások és beállítások biztosításához, valamint honlapunk látogatottságának figyelemmel kíséréséhez. Igen, Elfogadom

Electronica.hu | Az elektrotechnika alapfogalmai : Elektrotechnika | Elektronika



...


...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Elektromos hőmérsékletmérés
 
Mérés hőelemmel
Mérés ellenálláshőmérővel

Villamos mérések során, valamint a napi életben rendkívül fontos lehet a nem villamos mennyiségek, így a hőmérséklet mérése, és a hőmérsékletkülönbség mérése. A hőmérséklet mérésére hőérzékelőket használunk. A hőmérsékletváltozás hatására ezek valamely jellemzője megváltozik, és ezt a változást kijelző, szabályzó, regisztráló berendezéssel dolgozzuk fel.

Hőelemek

A hőelem két különböző fém összehegesztésével, hidegfolyatásával, vagy összeforrasztásával készül. Ha az így kialakított hely (melegpont) hőmérséklete eltér a közösített huzalok szabad végének (hidegpont) hőmérsékletétől, akkor a huzalok mentén a Seebeck-effektus révén elektromotoros erő támad; a két huzal mentén fellépő elektromotoros erő különbségének (és így a hőelem kapcsai közt mérhető feszültségnek) nagysága és iránya a hőmérsékletkülönbségtől, és a huzalok anyagi minőségétől függ, de független a hőelemhuzalok átmérőjétől. Az elektromotoros erőt lengőtekercses műszerrel (millivoltmérő) mérjük. A műszer árama nemcsak feszültségesést okoz, hanem meg is változtatja a hegesztési hely állapotát. Mind a két hiba elhanyagolható, ha kis fogyasztású, nagy belső ellenállású műszerrel mérünk, és ha a hőelem vastag huzalokból készült.

A hidegpont kialakítása

Mint a fentiekből következik az elektromotoros erő a meleg- és a hidegpont hőmérsékletének különbségétől függ. A melegpont tényleges hőmérséklete csak úgy értelmezhető, ha a hidegpont hőmérséklete állandó és stabil. Korábban a hidegpont kivezetéseit vízmentes burkolatban, olvadó tiszta jégbe merítették, így biztosítva annak 0 °C hőmérsékletét. A mai műszerekben beépített hidegpont kompenzátor van e célra. Egyes műszereknél a műszer 0 °C pontját mechanikus szerkezet segítségével a hidegpont tényleges hőmérsékletére lehetett beállítani (pl. 23 °C). A leolvasott hőmérsékleti értékhez ezt az értéket hozzáadva kapták meg a melegpont valós hőmérsékletét.

A távolság meghosszabbítása

A napi gyakorlatban többnyire a hőelem, és a feldolgozó műszer helyileg egymástól távol helyezkednek el. Szükséges a két hely vezetékkel történő összekötése. Erre a célra kompenzációs vezetéket kell használni. Ez alól kivételt képez(het)nek a köpenyhőelemek, amelyek nagy szilárdságúak, hajlíthatóak, és a kívánt helyig elvezethetőek. Az összekötő vezeték ellenállását valamilyen kerek értékre ki kell egészíteni, és ezt a kijelző műszerbe bele kell hitelesíteni!

A hőelem anyaga

A hőelemek elektromotoros ereje és mérési tartománya eltérő aszerint, hogy milyen szálak összehegesztésével készültek.Az elektromotoros erő és a hőmérsékletkülönbség közt az összefüggést ábrázoló vonalban majdnem minden kombinációnál görbülés van (nemlineáris az összefüggés, amit az EN 60584-1 szabvány tartalmaz).

Fe-CuNi (J)

A megengedett legmagasabb túlterhelési hőmérséklet: Φ0,5 mm-ig 400 °C, Φ1 mm-ig 600 °C, Φ3 mm-ig 900 °C. Az üzemi hőmérséklet, melyen a hőelem tartósan üzemeltethető, 200...300 °C-kal alacsonyabb.

NiCr-Ni (K)

A megengedett legmagasabb túlterhelési hőmérséklet: Φ0,2 mm-ig 700 °C, Φ0,5 mm-ig 900 °C, Φ1 mm-ig 1000 °C, Φ3 mm-ig 1300 °C. Az üzemi hőmérséklet, amelyen a hőelem tartósan üzemeltethető, 200...300 °C-kal alacsonyabb.

PtRh-Pt (S)

A megengedett legmagasabb túlterhelési hőmérséklet: Φ0,35 mm-ig 1300 °C, Φ0,5 mm-ig 1600 °C. Az üzemi hőmérséklet, melyen a hőelem tartósan üzemeltethető, 200...300 °C-kal alacsonyabb.

Ellenálláshőmérők

A méréshez megfelelő anyagból (pl. nikkelből, platinából) megfelelő alakú tekercset készítenek. A huzal csupaszon van porcelán testre csévélve, vagy szigetelő pépbe ágyazva. Az érzékelő szabványos ellenállása 100 ohm, vagy 500 ohm. (0 °C-on mérve). Az így elkészített mérőellenállást a mérendő térbe helyezik. Az ott lévő hőmérséklet hatására a mérőellenállás előjel helyesen megváltoztatja az ellenállását. A mérés folyamán ügyelni kell, hogy az átfolyó mérőáram minél kisebb legyen, hogy az érzékelőt fel ne melegítse! A megengedett áramsűrűség lehetőleg ne legyen nagyobb 0,1-0,2 A/mm²-nél! A hőmérséklet és ellenállás között nemlineáris az összefüggés. Az összefüggést a DIN IEC 751 szabvány tartalmazza.

A bekötő vezeték ellenállását itt is ki kell egészíteni valamilyen kerek értékre, és a kijelző műszerbe bele kell hitelesíteni!

A mért érték feldolgozása

Az ellenállásváltozást hídkapcsolásban (Wheatstone-híd, Thomson-híd), vagy mutatós lengőtekercses műszerrel mérhetjük.

Hőmérsékletkülönbség mérése

Szükség lehet különösen hőmennyiség mérésénél a Δt mérésére. Ilyen esetben csak párosított érzékelőket használjunk! A párosított érzékelők egymáshoz viszonyított hibája elhanyagolható legyen!

Források

  • Karsa Béla: Villamos mérőműszerek és mérések. (Műszaki Könyvkiadó. 1962)
  • Tamás László: Analóg műszerek. (Jegyzet. Ganz Műszer ZRt. 2006)
  • IEC 60 584-1 (BS EN 60 584-1)
Információ forrás: https://hu.wikipedia.org/wiki/Elektromos_hőmérsékletmérés
A lap szövege Creative Commons Nevezd meg! – Így add tovább! 3.0 licenc alatt van; egyes esetekben más módon is felhasználható. Részletekért lásd a felhasználási feltételeket.






A lap szövege Creative Commons Nevezd meg! – Így add tovább! 3.0 licenc alatt van; egyes esetekben más módon is felhasználható. Részletekért lásd a felhasználási feltételeket.