Figyelmeztetés: Az oldal megtekintése csak a 18 éven felüli látogatók számára szól!
Honlapunk cookie-kat használ az Ön számára elérhető szolgáltatások és beállítások biztosításához, valamint honlapunk látogatottságának figyelemmel kíséréséhez. Igen, Elfogadom

Electronica.hu | Az elektrotechnika alapfogalmai : Elektrotechnika | Elektronika



...


...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Differenciálegyenlet
 

A differenciálegyenletek olyan egyenletek a matematikában (közelebbről a matematikai analízisben), melyekben az ismeretlen kifejezés egy differenciálható függvény, és az egyenlet a függvény és ennek deriváltja között teremt kapcsolatot. A problémák differenciálegyenletben való megfogalmazása a fizikában, mérnöki tudományokban, a közgazdaságtanban és még számos tudományban alapvető szerepet tölt be.

Egy rugóval rögzített test elmozdulását az időben (ha az energiaveszteségtől eltekintünk) egy típusú egyenlet írja le. Ennek megoldása például az és a függvény is

Hogy mennyire fontosak az alkalmazásaikban a differenciálegyenletek, jól példázza Newton második törvénye. Ez nem mond ki mást, mint, hogy az elmozdulás idő szerinti második deriváltja egyenesen arányos az erővel. Ha az erő minden pillanatban csak a test helyzetétől függ, akkor ez a differenciálegyenlet így írható:

ahol:

a rezgő test tömege,
a kitérés (út) függvénye az idő szerint
az úgynevezett rugómerevség
a gyorsulás[1]
az ismeretlen függvény az x(t), ennek t szerinti második deriváltja az .

és mindez csak akkor igaz, ha a tömeg nem változik, ha változik, akkor lásd: Newton törvényei.

A differenciálegyenletek nem kizárólag akkor jutnak szerephez, ha az időben folyamatosan változnak az állapotjelzők értékei, hanem olyan diszkrét (elkülöníthető lépésekben lezajló) folyamatok esetében is (mint mondjuk egy sakkjátszma, vagy a természetben élőlénypopulációk növekedése), amikor a folyamat meghatározó állapotjellemzőinek folytonosként való kezelése tömegméretekben kielégítő helyességgel írja le a folyamatot. Egy mennyiség és megváltozásának kapcsolatára vagy megfigyelések utalnak, vagy feltételeznek egy elméleti relációt a jellemzők között. Például a növekedés általában függ magától a populáció nagyságától – ez egy közvetlenül a tapasztalatból származó modell. A bolygómozgás differenciálegyenletei viszont a newtoni mechanikából eredeztethetők.

Általában egy (közönséges) differenciálegyenlet megoldását az y=y(x) alakban írjuk fel (szóban: y az x függvénye). Az egyenletben az y(x) jelölés helyett inkább csak az y-t használjuk. Feltesszük azonban, hogy y egy valós intervallumon értelmezett, legalább annyiszor differenciálható függvény, ahányadik deriváltja szerepel az egyenletben. Például az

egy megoldása a (0,+∞)-en értelmezett (és ott differenciálható) függvény, egy másik a (2,+∞)-n értelmezett függvény.

Az egyenleteket kielégítő megoldásfüggvények csak a legegyszerűbb esetekben fejezhetők ki zárt alakban. Sok esetben szükségtelen is kiszámolni a konkrét megoldásokat, sokkal többet tudhatunk meg a folyamatokról, ha a megoldások kapcsolatait vizsgáljuk. Más esetben szükséges kiszámítani a megoldás konkrét értékeit. Mindkét feladatra számítógépes módszereket használnak, az első inkább kvalitatív, míg a második kvantitatív eredményt szolgáltat.

Differenciálegyenlet-típusok

az utóbbi a lineáris oszcillátor egyenlete (pl. az ideális rugó, ideális rezgőkör stb.).
  • Parciális differenciálegyenlet. Ekkor az ismeretlen függvény többváltozós és az egyenletben szereplő deriváltjai parciális deriváltak. Például:
az utóbbi a sztochasztikus Hamilton–Jacobi–Bellman-egyenlet.
  • Algebro-differenciálegyenlet. A differenciálegyenlet mellett a megoldásnak az algebrai mellékfeltételeknek is eleget kell tennie.
  • Késleletett differenciálegyenlet. Itt az ismeretlen és deriváltja mellett azok időbeli eltoltjai is szerepelnek.

Példa a populációdinamikából:

[2]
  • Integro-differenciálegyenletek. Deriválás mellett integrálok is szerepelnek.

Erre példa az impulzusra felírt Schrödinger-egyenlet

A különböző alkalmazási területeken további típusok is felmerülhetnek.

Közönséges differenciálegyenletek típusai

  • n-edrendűnek nevezzük a differenciálegyenletet, ha a benne szereplő magasabbrendű deriváltak között az n-edik a legnagyobb. Például:
elsőrendű,
másodrendű,
negyedrendű.
  • lineáris egy differenciálegyenlet, ha y (az ismeretlen függvény) és deriváltjai legfeljebb az első hatványon szerepelnek, és nem szerepel az egyenletben ilyen tényezők szorzata. Példa:
elsőrendű lineáris,
másodrendű lineáris.
  • nemlineáris, ha nem lineáris. Példa:






A lap szövege Creative Commons Nevezd meg! – Így add tovább! 3.0 licenc alatt van; egyes esetekben más módon is felhasználható. Részletekért lásd a felhasználási feltételeket.