Figyelmeztetés: Az oldal megtekintése csak a 18 éven felüli látogatók számára szól!
Honlapunk cookie-kat használ az Ön számára elérhető szolgáltatások és beállítások biztosításához, valamint honlapunk látogatottságának figyelemmel kíséréséhez. Igen, Elfogadom

Electronica.hu | Az elektrotechnika alapfogalmai : Elektrotechnika | Elektronika



...


...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Cayley-formula
 
Az ábra azt mutatja, hogy a 2, 3 és 4 csúcspontú, különböző színű csúcsokkal rendelkező üres gráf a csúcsai összekötésével összesen hányféle faként állítható elő.

A Cayley-formula egy gráfelméleti leszámlálási tétel, melyet Arthur Cayley-ről neveztek el. Meghatározza, hogy hány különböző csúcsú számozott fa adható meg. Ez az érték:

Történet

Arthur Cayley 1889-ben publikálta cikkét, mely tartalmazza ezt a formulát. A tételt azonban már korábban bebizonyították. 1860-ban Carl W. Borchardt (akinek elsőbbségét maga Cayley is elismerte), és még ennél is korábban, 1857-ben, James Joseph Sylvester közölt egy ezzel egyenértékű eredményt. Cayley cikkében az újdonság a gráfelmélet alkalmazása volt, és a tétel azóta is az ő nevéhez fűződik.

Bizonyítás

Tekintsük az

halmazt, mint a gráf csúcsainak halmazát. Jelöljük -nel a lehetséges fák számát csúcson. Nyilvánvalóan adódik, hogy

.

Hangsúlyozzuk, hogy számozott fákat vizsgálunk, vagyis 3 csúcspontú fa (gráf-izomorfizmus erejéig) csak 1 van, míg a számozott esetben a másodfokú pontot háromféleképpen választhatjuk meg, így ott 3 különböző megoldás létezik.

1. bizonyítás

A tétel legismertebb bizonyítása a Prüfer-kód felhasználásával történik. Mivel ez kölcsönösen egyértelmű (bijektív) megfeleltetést ad a számozott fák száma és az n - 2 hosszú számsorozatok között (melyeknek minden eleme 1 és n közti egész), így nyilvánvalóan adódik az állítás, vagyis

Lemma. A számozott fák és a Prüfer-kódok között kölcsönösen egyértelmű megfeleltetés létezik.

Bizonyítás.

Nyilvánvaló, hogy minden fához egyértelműen tartozik egy Prüfer-kód. Azt kell még belátni, hogy minden Prüfer-kódhoz (legyen ez v1, v2, … ,vn-2) is egyértelműen létezik egy fa, amit leír. Abból, hogy hány számból áll a kód azonnal kapjuk n értékét, hiszen a sorozat n - 2 hosszú. Legyen wk az a pont, amelynek elhagyásakor vk-t feljegyeztük. Tehát ha meghatározzuk wk-t minden k-ra, akkor már egyértelműen rekonstruálható a fa, hiszen élei pontosan a {wk, vk} párok. A wk-k pedig könnyen meghatározhatók, hiszen w1 a legkisebb olyan szám, ami nem fordul elő v1,v2,…,vn-1 között, általánosan pedig wk az a szám, ami nem fordul elő w1,w2,…,wk-1,vk,…,vn-1 számok között. Ilyen szám mindig létezik, hiszen ha mind különböző lenne, akkor is csak n - 1 -et zártunk ki az n-ből. Megkaptuk tehát a

éleket. Be kell látnunk, hogy ezek fát határoznak meg (tehát körmentes gráfot), és ekkor a gráf Prüfer-kódja éppen v1,v2,…,vn-1. Tegyük fel indirekt módon, hogy van a gráfban kör. A Prüfer-kód „visszafejtése” során minden egyes újabb wi felírásakor egy újabb pontot, és egy újabb élet kapunk meg. Kell lennie egy olyan lépésnek, amikor a kör utolsó élét húzzuk be, de ekkor egy olyan wi-t kéne felírnunk, amely már korábban szerepelt, ez azonban a fenti eljárásban nem lehetséges. Tehát minden n - 1 elemű sorozathoz, amelyben az első n - 2 elem mindegyike lehet {1,2,…,n} és az utolsó elem n, tartozik egy fa, és különböző sorozatokhoz különböző fa tartozik.

2. bizonyítás

A következő ötlet Riordantól és Rényitől származik. A bizonyítás alapgondolata egy olyan rekurzió megadása, melynek segítségével könnyen megoldható a probléma. A megfelelő rekurzió megtalálásához egy bonyolultabb probléma vizsgálatán keresztül juthatunk el. Legyen A az N = {1,2,3,…,n} csúcsok egy tetszőleges k elemű részhalmaza. Tekintsük az n csúcson megadható k darab fát tartalmazó (számozott) erdők számát, ahol az A halmaz elemei különböző fákban vannak. Jelöljük ezt Tn,k-val. Nyilvánvaló, hogy az A halmaznak csak az elemszáma számít. Ekkor Tn,1 = Tn. Tekintsünk egy F erdőt az A = {1,2,3,…,k} halmazzal, és ennek 1 csúcsát, melynek i db szomszédja van. Amennyiben ezt a csúcsot elhagyjuk, úgy az i db szomszéd és a 2,3,…,k pontok együtt Tn-1,k-1+i darab erdőt adnak. Mivel i-t tetszőlegesen választhatjuk ki aközül az n-k csúcs közül, mely az 1,2,…,k csúcsoktól különbözik, így nk ≥ 1 -re az következik, hogy

Legyen T0,0= 1 és n > 1 esetén Tn,0= 0. T0,0 = 1 azért szükséges, hogy fennálljon Tn,n = 1. Ekkor

amiből speciálisan:

Bizonyítás. A bizonyítás teljes indukcióval történik. A rekurziót (1)-et és az állítást felhasználva kapjuk:

Legyen i = n - k - i







A lap szövege Creative Commons Nevezd meg! – Így add tovább! 3.0 licenc alatt van; egyes esetekben más módon is felhasználható. Részletekért lásd a felhasználási feltételeket.